M. Hosseini; A.R. Dolatshahi; E. Ramezani
Abstract
Concrete is among the widely used materials in all industries and mineral and civil activities worldwide, highlighting its significance. Most natural and non-natural phenomena can influence the concrete's physical and mechanical properties, causing many irreparable damages. Acid rain is a natural inevitable ...
Read More
Concrete is among the widely used materials in all industries and mineral and civil activities worldwide, highlighting its significance. Most natural and non-natural phenomena can influence the concrete's physical and mechanical properties, causing many irreparable damages. Acid rain is a natural inevitable phenomenon, particularly in industrial zones with high pollution percentages.This work investigates the effect of acid rain on the concrete specimens containing micro-silica and limestone powder. To this end, the concrete specimens are divided into six groups. Throughout this paper, CN represents the concrete without micro-silica and limestone powder under no-rain conditions, CO is the concrete without micro-silica and limestone powder under normal rain conditions, CA is the concrete without micro-silica and limestone powder under acid rain conditions, CMLN is the concrete containing micro-silica and limestone powder under no-rain conditions, CMLO is the concrete containing micro-silica and limestone powder under normal rain conditions, and CMLA shows the concrete containing micro-silica and limestone powder under acid rain conditions. The measured physical properties are the effective porosity, dry density, water absorption, and velocity of longitudinal waves. The mechanical properties including the Brazilian tensile strength, uniaxial compressive strength, triaxial compressive strength, cohesion, and internal friction angle are also measured. For the samples of CN and CMLN, they are tested under no rainfall conditions, whereas the samples of CA and CMLA are tested after 20 cycles of acid rain (pH = 2). The samples of CO and CMLO are also tested after undergoing 20 normal rain cycles (urban water with pH = 7). In each test cycle, there is 1 hour of rain and 1 hour of no rain. The results obtained show that adding micro-silica and limestone powder improves its properties so that the decrease in the effective porosity, longitudinal wave velocity, dry unit weight, water absorption, Brazilian tensile strength, uniaxial compressive strength, cohesion, and internal friction angle of the specimens of CMLA is less than those for the specimens of CA.
M. Hosseini; D. Fakhri
Abstract
The purpose of this work is to investigate the possibility of using mine wastes in the improvement of concrete properties. This research work investigates the physical and mechanical properties of the concrete specimens. These concrete specimens include concrete-lacking fibres, micro-silica and limestone ...
Read More
The purpose of this work is to investigate the possibility of using mine wastes in the improvement of concrete properties. This research work investigates the physical and mechanical properties of the concrete specimens. These concrete specimens include concrete-lacking fibres, micro-silica and limestone powder (C), concrete-containing glass fibres without micro-silica and limestone powder (GC), concrete-containing micro-silica and limestone powder without fibres (CML), and concrete-containing glass fibres, micro-silica, and limestone powder (CGML). The physical and mechanical properties including the effective porosity, longitudinal wave velocity, water absorption, unit weight, tensile strength, uniaxial compressive strength, triaxial compressive strength, cohesion, and internal friction angle are investigated. The results obtained show that adding glass fibres to the concrete (GC) improve its properties compared to the fibre-less concrete (C). However, the properties of GC are improved significantly less than CGML. The Brazilian tensile strength and uniaxial compressive strength of GC increase by 13.6% and 10.95% relative to C. The Brazilian tensile strength and uniaxial compressive strength of CGML increase by 21.8% and 45.94% relative to C. Finally, it can be concluded that adding the micro-silica and limestone powder to the glass fibre concrete as well as the use of mine wastes also significantly improves the properties of the concrete.
S. Hadi Hosseini; Mohammad Ataie; Hamid Aghababaie
Abstract
In this paper, after collecting the rock samples from eight mines and one high way slope, the tests for determination of dry density, Uniaxial Compressive Strength, tensile Strength (Brazilian Test), elastic modulus, Schmidt hammer rebound number have been done on samples. In addition, in order to calculating ...
Read More
In this paper, after collecting the rock samples from eight mines and one high way slope, the tests for determination of dry density, Uniaxial Compressive Strength, tensile Strength (Brazilian Test), elastic modulus, Schmidt hammer rebound number have been done on samples. In addition, in order to calculating the mean size of rock grains, quartz content, hardness and abrasivity, a thin sections of each rock have been studied. Then, the rock samples have been drilled using actual pneumatic top hammer drilling machine with 3½ inches diameter cross type bit. The regression analyses showed that Brazilian tensile strength (R2=0.81), uniaxial compressive strength (R2=0.77) and Schmidt hammer rebound (R2=0.73) are the most effective parameters on drilling rate and have a partly good correlation with drilling rate.