Exploitation
Hadi Fattahi; Mohammad Amirabadifarahani; Hossein Ghaedi
Abstract
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of ...
Read More
This study introduces an innovative application of the Power Deck method to optimize drilling and blasting operations in open-pit mining, with a focus on the Nizar cement factory in Qom, Iran. Unlike traditional blasting techniques, this method strategically utilizes a controlled air gap at the end of each blast hole to enhance explosive energy distribution, thereby reducing excessive drilling and minimizing explosive consumption. Through five blast phases, optimal hole diameters (76 mm and 90 mm) were implemented while maintaining a standardized 1-meter air gap, eliminating the need for additional drilling tests. The findings demonstrate a significant improvement in blasting efficiency, leading to a 12.5% reduction in specific charge and a 9% decrease in specific drilling compared to conventional methods. Post-blast fragmentation analysis, validated using the F50 index from Split-Desktop software, confirmed particle sizes ranging from 10 to 32 cm, aligning with predictions from the Kaz-Ram, Kaznetsov, and Swedifo models. Furthermore, the adoption of the Power Deck method resulted in a 1,448-ton increase in processed material over two months, minimizing crusher downtime due to oversized fragments. This study provides a novel, cost-effective approach to improving rock fragmentation, reducing blasting-related inefficiencies, and enhancing the overall economic performance of open-pit mining operations.
Blessing Olamide Taiwo; Gebretsadik Angesom; Yewuhalashet Fissha; Yemane Kide; Enming Li; Kiross Haile; Oluwaseun Augustine Oni
Abstract
Rock blast production rate (BPR) is one of the most crucial factors in the evaluation of mine project's performance. In order to improve the production of a limestone mine, the blast design parameters and image analysis results are used in this work to evaluate the BPR. Additionally, the effect of rock ...
Read More
Rock blast production rate (BPR) is one of the most crucial factors in the evaluation of mine project's performance. In order to improve the production of a limestone mine, the blast design parameters and image analysis results are used in this work to evaluate the BPR. Additionally, the effect of rock strength on BPR is determined using the blast result collected. In order to model BPR prediction using artificial neural networks (ANNs) and multivariate prediction techniques, a total of 219 datasets with 8 blasting influential parameters from limestone mine blasting in India are collected. To obtain a high-accuracy model, a new training process called the permutation important-based Bayesian (PI-BANN) training approach is proposed in this work. The developed models are validated with new 20 blast rounds, and evaluated with two model performance indices. The validation result shows that the two model results agree well with the BPR practical records. Additionally, compared to the MVR model, the proposed PI-BANN model in this work provides a more accurate result. Based on the controllable parameters, the two models can be used to predict BPR in a variety of rock excavation techniques. The study result reveals that rock strength variation affects both the blast outcome (BPR) and the quantity of explosives used in each blast round.