Elahe Ghaemmaghami; Mohamad Reza Samadzadeh Yazdi; Mohammad Amin Darvishi; Ali akbar Sadati; Abbas Najafi
Abstract
As the mass ratio of alumina to silica (A/S ratio) in bauxite decreases, the cost of alumina production by the Bayer process sharply increases. With the increasingly fierce competition in the alumina industry and the gradual reduction in bauxite grade, when the A/S ratio drops to 3-4, the Bayer process ...
Read More
As the mass ratio of alumina to silica (A/S ratio) in bauxite decreases, the cost of alumina production by the Bayer process sharply increases. With the increasingly fierce competition in the alumina industry and the gradual reduction in bauxite grade, when the A/S ratio drops to 3-4, the Bayer process is challenging to meet the market competition and production requirements. In such cases, the alumina production by sintering method has a vast development prospect and application potential for low-grade bauxite ores. The low A/S ratio and the high iron oxide content are the difficulties in the alumina production by the sintering process. This work adopts the lime-soda sinter process for extracting alumina from bauxite samples (A/S ratio = 1.34 and 20.80% Fe2O3) of the Semirom mine in Iran. The effects of sintering parameters are investigated. The maximum alumina extraction (88%) was obtained by a CaO/SiO2 molar ratio of 1.2, Na2O/Al2O3 molar ratio of 0.9, and sintering temperature at 1250 °C for 80 min. Also 83% of alumina is extracted by decreasing the N/A ratio to 0.66, to decrease the sodium carbonate consumption for a more economical process. The sintered materials are leached with sodium carbonate solution, and aluminum hydroxide [Al(OH)3] is precipitated. Finally, pure alumina (Al2O3) is obtained with a purity of 98 % after calcination at 1200 °C for 2 hours.
Mineral Processing
M. R. Khani; M. Karamoozian
Abstract
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, ...
Read More
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, Tash, and Shirin Cheshmeh bauxites. A 4-factor 3-level response surface methodology was applied for the design and analysis of the experiment with the optimization of Na2O concentration, digestion temperature, residence time, and amount of lime addition. Towquadratics and one linear model were derived for the prediction of digestion efficiency, and A/S and N/S responses. The results obtained showed that the optimum amounts for Na2O concentration, temperature, amount of lime addition and residence time were 180 g/L, 275°C, 7.73%, and 50 minutes, respectively, in which the digestion efficiency, A/S, and N/S reached 72.05%, 1.169, and 0.27, respectively. Validation experiment showed that the digestion efficiency, A/S, and N/S were 72.24%, 1.162, and 0.28% respectively, which meant a 2% increase in digestion efficiency and a 0.09 and 0.02 decrease in A/S and N/S, respectively, compared to the current operating condition.
M. Rezaee Rad; Sh. Shahhoseini; M. Janfada; H. A. Mirzaee; P. Kelidari
Abstract
Low grade diasporic bauxite in the Jajarm mine with an A/S (Al2O3/SiO2) ratio of 2.3 is not usable in the Bayer process at Jajarm Alumina Complex. Due to the severe interlocking effect between the diaspore and aluminosilicate minerals (Chamosite and Kaolinite) and iron-containing minerals in a microcrystal ...
Read More
Low grade diasporic bauxite in the Jajarm mine with an A/S (Al2O3/SiO2) ratio of 2.3 is not usable in the Bayer process at Jajarm Alumina Complex. Due to the severe interlocking effect between the diaspore and aluminosilicate minerals (Chamosite and Kaolinite) and iron-containing minerals in a microcrystal matrix, the thermo-chemical treatment, which is independent from micro-mineralogy, was chosen for bauxite desilication. Five parameters affecting the process and their interactions were investigated using the Taguchi experimental design method. The results obtained showed that there was an interaction between the furnace temperature and the leaching time. Moreover, the optimum values for the parameters involved in the thermo-chemical treatment were determined to be a furnace temperature of 950 °C, a furnace residence time of 90 min, a leaching agent (soda) concentration of 150 g L-1, and a leaching time of 120 min, where the solid content (in leaching) had no effect. Moreover, a model was proposed using the Dx7 software to predict the A/S ratio. The ratio was predicted to be 7.52 at the optimum conditions, whereas in the experiments carried out under the same conditions, it was obtained to be 6.96 ± 0.2, which means a 59% decrease in silica and an increase in the A/S ratio of up to 3 times with 80% weight recovery.
soghra salehi; M. Noaparast; S.Z. Shafaei; A. Amini; A. Heidarnia
Abstract
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination ...
Read More
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination conditions in 1 h at 900 °C, the response surface methodology (RSM) with four factors in five levels was employed in order to evaluate the effects of calcination temperature, calcination time, acid concentration, and leaching time on the iron leaching efficiency. A quadratic model is proposed using this methodology to correlate the leaching variables. The test results indicate that the model is consistent with the experimental data, and that the most important varriables involved are the acid concentration, leaching time, and squared term of calcination temperature (A2). The maximum iron recovery was 94.97%, and the Fe grade in the solids remained was 2.35% at the calcination temperature of 900 °C, a calcination time of 1 hour, and a leaching time of 2 h in hydrochloric acid (6 mM).