Environment
farhad samimi namin; Zahra S Tarasi; Keyvan Habibi kilak
Abstract
Environmental issues related to mine wastes have highlighted the importance of waste recycling. A study was conducted on sand mines in Kurdistan province, Iran, focusing on the construction of artificial stones from effluent to minimize environmental impact. The research included environmental, physical-mechanical, ...
Read More
Environmental issues related to mine wastes have highlighted the importance of waste recycling. A study was conducted on sand mines in Kurdistan province, Iran, focusing on the construction of artificial stones from effluent to minimize environmental impact. The research included environmental, physical-mechanical, and economic analyses, using the Analytic Hierarchy Process (AHP) for environmental assessments. Tests on density, water absorption, and strength showed that stones containing effluents were superior to other products. Increasing effluent percentages did not significantly affect density but improved water absorption and strength. Artificial stones containing 40% effluent demonstrated the greatest resistance and the least water absorption. This formulation achieves compressive strengths of 36.07 MPa, flexural strengths of 15.09 MPa, and tensile strengths of 1.89 MPa. Furthermore, it possesses a dry density of 2.33 gr/cm³, and a water absorption rate of 3.82%. Additionally, stones with effluent demonstrated better resistance to corrosion acid. The research methodology employed in the environmental analysis involved the application of the Analytic Hierarchy Process (AHP). Findings from environmental studies indicated that the volume of waste emerged as the most significant criterion with 27.3% weight when evaluating the selection of construction products that are environmentally compatible. Furthermore, research in environmental studies indicates that artificial stone is at least 10% more preferred than natural stone, 48% more preferred than tile, and 63% more preferred than brick. The analysis within the economic section demonstrated that the production of artificial stone incorporating waste, which achieved an internal rate of return of 138%, was more cost-effective than comparable products.
K. Barani; H. Esmaili
Abstract
In this work, the waste stone sludge obtained from the granite and marble stone processing factories was used for the manufacture of artificial stones using vibratory compaction in a vacuum environment. The results obtained showed that water absorption and density increased, and the flexure, ...
Read More
In this work, the waste stone sludge obtained from the granite and marble stone processing factories was used for the manufacture of artificial stones using vibratory compaction in a vacuum environment. The results obtained showed that water absorption and density increased, and the flexure, compressive, and tensile strengths decreased with increase in the content of the waste stone sludge. These results also demonstrated that by combining 50% of stone sludge, 12% of ground quartz, 25% of waste glass, and 13% of resin at a compaction pressure of 12 MPa, a vibration frequency of 30 Hz, and vacuum conditions at 50 mm Hg, artificial stone slabs with a water absorption less than 0.64, a density less than 2.68, a flexure strength more than 45 MPa, a compressive strength more than 90 MPa, and a tensile strength more than 35 MPa can be obtained. The artificial stone slabs obtained in this research work had good density and water absorption, and flexure, compressive, and tensile strengths compared to the natural stones, and thus they can be regarded as the ideal construction materials for covering walls or paving floors.