B. Shokouh Saljoughi; A. Hezarkhani
Abstract
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation ...
Read More
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation functions to estimate Cu grade of borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, SE Iran. WNN parameters such as dilation and translation are fixed and only the weights of the network are optimized during its learning process. The efficacy of this type of network in function learning and estimation is compared with Ordinary Kriging (OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, at first C–V log–log plots are generated based on the results of OK and WNN. The plots then are used to determine the Cu threshold values of the alteration zones. To investigate the correlation between geological model and C-V fractal results, the log ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 0.74. Spatial correlation between the potassic alteration zones resulted from 3D geological modeling and high concentration zones in C-V fractal model showed that the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. Generally, the results showed that the WNN (Morlet activation function) with OA greater than OK can be can be a suitable and robust tool for quantitative modeling of alteration zones, instead of qualitative methods.
Exploitation
H. Nikoogoftar Safa; A. Hezarkhani
Abstract
In this paper, we aim to present a quantitative modeling for delineating the alteration zones and lithological units in the hypogene zone of Masjed-Daghi Cu-Au porphyry deposit (NW Iran) based on the drill core data. The main goal of this work is to apply Ordinary Kriging (OK) and concentration-volume ...
Read More
In this paper, we aim to present a quantitative modeling for delineating the alteration zones and lithological units in the hypogene zone of Masjed-Daghi Cu-Au porphyry deposit (NW Iran) based on the drill core data. The main goal of this work is to apply Ordinary Kriging (OK) and concentration-volume (C-V) fractal model based on Cu grades in order to separate the different alteration zones and lithological units. Initially, anisotropy was investigated and modeled based on calculating the experimental semi-variograms of the Cu values, and the main variography directions were identified and evaluated. Then a block model of the Cu grades was generated using the kriging, and the estimation obtained for OK was applied to the C-V fractal model. The C–V log–log plot based on the estimation method represents the various alteration and lithological zones via threshold values. The comparison and interpretation of the alteration zones and lithological units based on the C–V fractal modeling proved that the method was acceptable and capable of correctly delineating the alteration and lithological units. Regarding the correlation derived from log ratio matrix (used to compare the geological model with the C-V fractal results), it was observed that Cu values less than 0.4% were obtained for OK overlapped voxels with the phyllic alteration zone by an overall accuracy (OA) of 0.737. The spatial correlation between the potassic alteration zones resulting from a 3D geological modeling and the high concentration zones in the C-V fractal model based on OK indicated that the alteration zone contained Cu values greater than 0.4% with OA of 0.791. Also using this method, trustworthy results were obtained for the rock units.
Exploitation
S. Abbaszadeh; Seyed R. Mehrnia; S. Senemari
Abstract
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the ...
Read More
The Ramand region is a part of the magmatic belt in Urmieh-Dokhtar structural zone in Iran, located in the SW of BuinـZahra. This area mainly consists of felsic extrusions such as rhyolites and rhyodacites. Argillic alterations with occurrences of mineralized silica veins are abundant in most of the volcanic units. In this research work, we used the GIS facilities for modeling the Ramand geo-spatial databases according to the Fuzzy logic algorithms. The main phase of mineralization occurred in the altered regions and is located near the cross cut fault systems. Therefore, the main criteria for integration were the geological, structural, geophysical, and remotely sensed (Landsat7, ETM+) layers. Also we used a contoured aeromagnetic map for revealing and weighting lineaments. By the Fuzzy techniques applied, all the evidential themes were integrated to prognosis of ore mineralization potentials based on γ = 0.75. As a result, the hydrothermal alterations and their relevant post-magmatic mineralization were introduced in the south and eastern parts of the Ramand region by the fuzzification procedures. Our highlighted recommendation for more exploration activities is focused on the geophysical land surveys (electric and magnetic fields), and the geochemical sampling from mineralized regions in the depth and outcrops of alterations.