S. Aghababaei; H. Jalalifar; A. Hosseini
Abstract
Providing an approach to calculate a suitable panel width for the longwall mining method is considered considering both the technical and economic factors. Based on the investigations carried out, a technical-economic model is proposed to calculate a suitable panel width. The proposed model is a combination ...
Read More
Providing an approach to calculate a suitable panel width for the longwall mining method is considered considering both the technical and economic factors. Based on the investigations carried out, a technical-economic model is proposed to calculate a suitable panel width. The proposed model is a combination of the rock engineering system-based model and the technical relationships to estimate the expected actual face advance rate of the longwall panel and also the economic relationships to determine the operational costs. Applying the technical conditions to the presented model is conducted by the vulnerability index of the advancing operation, which considers the face advance rate as the main important factor that controls the operational costs of the longwall face. The performance evaluation of the presented model is possible by the recordable field data, which is one of its advantages. This process is carried out by a case study, and the results obtained indicate that the developed approach can provide an applicable tool to calculate a suitable panel width.
Rock Mechanics
H.C. ZHAO; H.J. An; M.S. Gao
Abstract
Both the deformation characters and the failure mode of the large cross-sectional longwall installation roadway under compound roof are becoming an emergent issue than ever before due to the rapid development of modern mining equipment. Various engineering applications have revealed that the insufficient ...
Read More
Both the deformation characters and the failure mode of the large cross-sectional longwall installation roadway under compound roof are becoming an emergent issue than ever before due to the rapid development of modern mining equipment. Various engineering applications have revealed that the insufficient design and inappropriate support technology are the main reasons for the fatal accidents associated with the sudden roof fall attributed to the separation of the overlying compound strata. The present research work, therefore, starts with a case study using the conventional support technology in order to demonstrate the importance of this issue followed by a summarization of the typical failure mode of the longwall installation roadway under compound strata with varied thicknesses. Then a simplified theoretical model is proposed and set up aiming at a better understanding of the distribution of the elastic-plastic zones as well as the effects of different caving procedures. The finite element analysis software program FLAC3D is adopted to evaluate the effect of the caving method and the reinforcement provided by an additional support. Then a case study conducted at a typical coal mine with compound roof condition is presented to verify the advantages of the proposed design. The results obtained show that the optimized design presented in this research work is effective to control the deformation of the surrounding rock, particularly in terms of separation of the overlying compound strata.
Rock Mechanics
M. Rezaei
Abstract
Estimation of the height of caved and fractured zones above a longwall panel along with the stability conditions of the goaf area are very crucial to determine the abutment stresses, ground subsidence, and face support as well as designing the surrounding gates and intervening pillars. In this work, ...
Read More
Estimation of the height of caved and fractured zones above a longwall panel along with the stability conditions of the goaf area are very crucial to determine the abutment stresses, ground subsidence, and face support as well as designing the surrounding gates and intervening pillars. In this work, the height of caving-fracturing zone above the mined panel is considered as the height of destressed zone (HDZ). The long-term estimation of this height plays a key role in the accurate determination of maximum ground surface subsidence and the amount of transferred loads towards the neighbouring solid sections. This paper presents a new stability analysis model of caved material system in the goaf area. For this aim, a theoretical energy-based model of HDZ determination in long-term condition is developed. Then the stability condition of the caved material system is investigated using the principle of minimum potential energy. On the basis of the actual data gathered from the literature, the unstable time period of the caved material system is also calculated. Moreover, the effects of time- and temperature-related parameters and constant coefficients as well as their inherent relations with HDZ are evaluated. Furthermore, sensitivity analysis shows that the two temperature-related constants material constant and time are the most effective variables in HDZ, and the slope of material hardening is the least effective one. The estimated HDZ and the stability time of the caved materials can be successfully applied to determine the induced stress and the maximum surface subsidence, respectively, due to longwall mining.