M. Ghaedi Ghalini; M. Bahaaddini; M. Amiri Hossaini
Abstract
Estimation of the in-situ block size is known as a key parameter in the characterization of the mechanical properties of rock masses. As the in-situ block size cannot be measured directly, several simplified methods have been developed, where the intrinsic variability of the geometrical features of discontinuities ...
Read More
Estimation of the in-situ block size is known as a key parameter in the characterization of the mechanical properties of rock masses. As the in-situ block size cannot be measured directly, several simplified methods have been developed, where the intrinsic variability of the geometrical features of discontinuities are commonly neglected. This work aims to estimate the in-situ block size distribution (IBSD) using the combined photogrammetry and discrete fracture network (DFN) approaches. To this end, four blasting benches in the Golgohar iron mine No. 1, Sirjan, Iran, are considered as the case studies of this research work. The slope faces are surveyed using the photogrammetry method. Then 3D images are prepared from the generated digital terrain models, and the geometrical characteristics of discontinuities are surveyed. The measured geometrical parameters are statistically analysed, and the joint intensity, the statistical distribution of the orientation, and the fracture trace length are determined. The DFN models are generated, and IBSD for each slope face is determined using the multi-dimensional spacing method. In order to evaluate the validity of the generated DFN models, the geological strength index (GSI) as well as the stereographic distribution of discontinuities in the DFN models are compared against the field measurements. A good agreement has been found between the results of the DFN models and the filed measurements. The results of this work show that the combined photogrammetry and DFN techniques provide a robust, safe, and time-efficient methodology for the estimation of IBSD.
Rock Mechanics
M. Lak; M. Fatehi Marji; A.R. Yarahamdi Bafghi; A. Abdollahipour
Abstract
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures ...
Read More
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact rock due to the explosion. In this work, the process of extension of blast-induced fractures in rock masses is simulated using the discrete element method. It should be noted that, in this work, fracture propagation from both the rock mass inherent fractures and newly induced cracks are considered. The rock mass inherent fractures are generated using the discrete fracture network technique. In order to provide the possibility of fracture extension in the intact rock blocks, they are divided into secondary blocks using the Voronoi tessellation technique. When the modeling is completed, the fracture extension processes in the radial and longitudinal sections of a borehole are specified. Then a blast hole in an assumed rock slope is modeled and the effect of pre-splitting at the back of the blast hole (controlled blasting) on the fracture extension process in the blast area is investigated as an application of the proposed approach. The modeling results obtained show that the deployed procedure is capable of modeling the explosion process and different fracture propagations and fragmentation processes in the rock masses such as controlled blasting.
Rock Mechanics
M. Noroozi; R. Rafiee; M. Najafi
Abstract
Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed ...
Read More
Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed rock masses but only few of them can take into account the influence of the pre-existing natural fractures. In this work, the pre-existing fractures are explicitly modeled as a Discrete Fracture Network (DFN) model, which is fully coupled with the FEM modeling for stability analysis of support systems in a diversion tunnel at the Rudbar Lorestan dam site. Hence, at first, using the surveyed data in the diversion tunnel and an estimation of the suitable probability distribution function on geometric characteristics of the existing joint sets in this region, the 3D DFN model was simulated using the stochastic discrete fracture networks generator program, DFN-FRAC3D. In the second step, a coupled 2D Finite Element Method and the prepared stochastic model were used for analysis of existent (based on technical reports) recommended support systems. The objective here is to grasp the role of the fracture networks on the results of the tunnel stability analysis using FEM modeling and also to compare the results with those obtained through stability analysis without considering the effect of fractures.