Mine Economic and Management
Hadi Fattahi; Hossein Ghaedi
Abstract
The maximum energy consumption of stone cutting machines is one of the important cost factors during the process of cutting construction stones. Accurately predicting and estimating the maximum energy consumption performance of the cutting machine, along with estimating the cutting costs, can help approach ...
Read More
The maximum energy consumption of stone cutting machines is one of the important cost factors during the process of cutting construction stones. Accurately predicting and estimating the maximum energy consumption performance of the cutting machine, along with estimating the cutting costs, can help approach the optimal cutting operating conditions to reduce energy consumption and minimize machine depreciation. However, due to the uncertainty and complexity of building stone textures and properties, determining the maximum energy consumption of the device is a difficult and challenging task. Therefore, this paper employs the rock engineering system method to solve the aforementioned problem. To this end, 120 test samples were collected from a marble factory in the Mahalat region of Iran, representing 12 types of carbonate rocks. The input parameters considered for the analysis were the Mohs hardness, uniaxial compressive strength, Young's modulus, production rate, and Schimazek’s F-abrasiveness factors. In the study, 80% of the collected data, equivalent to 96 data points, were utilized to construct the model using the rock engineering system-based method. The obtained results were then compared with other regression methods including linear, power, exponential, polynomial, and multiple logarithmic regression methods. Finally, the remaining 20 percent of the data, comprising 24 data points, were used to evaluate the accuracy of the models. Based on the statistical indicators, namely root mean square error, mean square error, and coefficient of determination, it was found that the rock engineering system-based method outperformed other regression methods in terms of accuracy and efficiency when estimating the maximum energy consumption.
Rock Mechanics
A.R. Dormishi; M. Ataei; R. Khaloo Kakaie; R. Mikaeil; S. Shaffiee Haghshenas
Abstract
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. ...
Read More
One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the maximum energy consumption of the gang saw during the process of soft dimensional rocks with the help of an intelligent optimization model such as random non-linear techniques, i.e. the Hybrid ANFIS-DE and Hybrid ANFIS-PSO algorithms based upon 4 physical and mechanical parameters including uniaxial compressive strength, Mohs hardness, Schimazek’s F-abrasiveness factors, Young modulus, and an operational characteristic of the machine, i.e. production rate. During this research work, 120 samples are tested on 12 carbonate rocks. The maximum energy consumption of the cutting machine during this work is measured and used as a modeling output for evaluating the performance of cutting machine. Also meta-heuristic algorithms including DE and PSO algorithms are used for training the Adaptive Neural Fuzzy Inference System (ANFIS). In addition, the PSO algorithm has a higher ability in terms of model output and performance indices and has a superiority over the differential evolution algorithm. Furthermore, comparison between the measured datasets with the ANFIS-DE and ANFIS-PSO models indicate the accuracy and ability of the ANFIS-PSO model in predicting the performance of gang saw considering the machine’s properties and the cut rock.