Exploration
Hamid Reza Baghzendani; Hamid Aghajani; Gholam Hossein Karami
Abstract
Karsts are important sources of groundwater, and it is crucial to determine their water volume and quality. The Ravansar Karst spring in the Kermanshah province is a significant water resource with a substantial water volume in the area. The source of this spring is the carbonate rock unit from the Cretaceous ...
Read More
Karsts are important sources of groundwater, and it is crucial to determine their water volume and quality. The Ravansar Karst spring in the Kermanshah province is a significant water resource with a substantial water volume in the area. The source of this spring is the carbonate rock unit from the Cretaceous period and is affected by tectonic changes and faulting caused by movements related to the Zagros folding. In this work, geophysical methods of microgravity, electrical resistivity, and induced polarization have been utilized to identify the extent of karst development in the limestone units. The minimum residual gravity values are associated with karstification. The field dataset comprised two electrical profiles with the dipole- dipole and pole-dipole arrays. The resistivity and gravity data were inverted using a 2D algorithm based on the least square’s technique with a smoothing constraint. According to the processing and 3D modelling of gravity data; not only cavity-shaped voids and spacious cavity chambers were identified but also sub-structures and micro-karstification in carbonate rocks were detected. The most significant finding from the field survey is the detection of low gravimetric values, indicating relatively large holes and chambers that were previously unknown and inaccessible from ground level. These findings are consistent with known collapse and sediment infill features, as seen in surface sinkholes, cavities, and karstification systems. Geophysical surveys and field surveys show that the holes and karsts in the area are related to tectonic phenomena and faulting and are conduits for transporting water to the Ravansar spring.
Exploitation
K. Mostafaei; H. R. Ramazi
Abstract
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties ...
Read More
Madan Bozorg is an active copper mine located in NE Iran, which is a part of the very wide copper mineralization zone named Miami-Sabzevar copper belt. The main goal of this research work is the 3D model construction of the induced polarization (IP) and resistivity (Rs) data with quantifying the uncertainties using geostatistical methods and drilling. Four profiles were designed and surveyed using the CRSP array based on the boreholes. The data obtained was processed, 2D sections of IP and Rs were prepared for each profile by inverting the data, and these sections were evaluated by some exploratory boreholes in the studied area. Based on the geostatistical methods, 3D block models were constructed for the 2D IP and Rs data, and the uncertainties in the prepared models were obtained. The mineralization location was determined according to the geophysical detected anomalies. In order to check the models, some locations were proposed for drilling in the cases that the borehole data was unavailable. The drilling results indicated a high correlation between the identified anomalies from the models and mineralization in the boreholes. The results obtained show that it is possible to construct 3D models from surveyed 2D IP & Rs data with an acceptable error level. In this way, the suggested omitted drilling locations were optimized so that more potentials could be obtained for copper exploration by the least number of boreholes.