Exploration
Bashir Shokouh Saljoughi; Ardeshir Hezarkhani
Abstract
The porphyry Cu-mineralization potential area studied in this article is located in the southern section of the Central Iranian volcano–sedimentary complex, contains large number of mineral deposits, and occurrences that are currently facing a shortage of resources. Therefore, prospecting potential ...
Read More
The porphyry Cu-mineralization potential area studied in this article is located in the southern section of the Central Iranian volcano–sedimentary complex, contains large number of mineral deposits, and occurrences that are currently facing a shortage of resources. Therefore, prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising areas for future explorations that most of them are very time-consuming and costly. The main goal of mineral prospecting is applying a transparent and robust approach for identifying high potential areas to be explored further in the future. This study presents the procedure taken to create two different Cu-mineralization prospectivity maps. This study aims to investigate the results of applying the ANN technique, and to compare them with the outputs of applying GEP method. The geo-datasets employed for creating evidential maps of porphyry Cu mineralization include solid geology map, alteration map, faults, dykes, airborne total magnetic intensity, airborne gamma-ray spectrometry data (U, Th, K and total count), and known Cu occurrences. Based on this study, the ANN technique (10 neurons in the hidden layer and LM learning algorithm) is a better predictor of Cu mineralization compared to the GEP method. The results obtained from the P-A plot showed that the ANN model indicates that 80% (vs. 70% for GEP) of the identified copper occurrences are projected to be present in only 20% (vs. 30% for GEP) of the surveyed area. The ANN technique due to capabilities such as classification, pattern matching, optimization, and prediction is useful in identifying anomalies associated with the Cu mineralization.
Environment
B. Shokouh Saljoughi; A. Hezarkhani
Abstract
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and ...
Read More
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and peripheral spaces has become a high priority in this area. This work aims to identify the geochemical anomalies associated with the Cu mineralization using the Spectrum–Area (S–A) multi-fractal and Wavelet Neural Network (WNN) methods. At first, the Factor Analysis (FA) is applied to integrate the multi-geochemical variables of a regional stream sediment dataset related to major mineralization elements in the studied area. Then the S–A model is applied to decompose the mixed geochemical patterns obtained from FA and compare with the results obtained from the WNN method. The S–A model, based on the distinct anisotropic scaling properties, reveals the local anomalies due to the consideration of the spatial characteristics of the geochemical variables. Most of the research works show that the capability (i.e. classification, pattern matching, optimization, and prediction) of an ANN considering its successful application is suitable for inheriting uncertainties and imperfections that are found in mining engineering problems. In this paper, an alternative method is presented for mineral prospecting based on the integration of wavelet theory and ANN or wavelet network. The results obtained for the WNN method are in a good agreement with the known deposits, indicating that the WNN method with Morlet transfer function consists of a highly complex ability to learn and track unknown/undefined complicated systems. The hybrid method of FA, S–A, and WNN employed in this work is useful to identify anomalies associated with the Cu mineralization for further exploration of mineral resources.
B. Shokouh Saljoughi; A. Hezarkhani; E. Farahbakhsh
Abstract
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become ...
Read More
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising areas for future explorations, most of which are very time-consuming and costly. The main goal of mineral prospecting is applying a transparent and robust approach for identifying high potential areas to be explored further in the future. This work presents the procedure taken to create two different Cu-mineralization prospectivity maps. The first map is created using a knowledge-driven fuzzy technique and the second one by a data-driven Artificial Neural Network (ANN) approach. In this study aim is to investigate the results of applying the ANN technique and to compare them with the outputs of applying the fuzzy logic method. The geo-datasets employed for creating evidential maps of porphyry Cu mineralization include the solid geology map, alteration map, faults, dykes, airborne total magnetic intensity, airborne gamma-ray spectrometry data (U, Th, K and total count), and known Cu occurrences. Based on this study, the ANN technique is a better predictor of Cu mineralization compared to the fuzzy logic method. The ANN technique, due to capabilities such as classification, pattern matching, optimization, and prediction, is useful in identifying the anomalies associated with the Cu mineralization.