O.E. Ifelola
Abstract
Metals are ubiquitous within the earth crust. However, the exceptional high-level concentration of heavy metals in the soil due to natural or anthropogenic activities and the chemical forms in which they exist determine the level of risk they portend to the environment. This work was aimed at determining ...
Read More
Metals are ubiquitous within the earth crust. However, the exceptional high-level concentration of heavy metals in the soil due to natural or anthropogenic activities and the chemical forms in which they exist determine the level of risk they portend to the environment. This work was aimed at determining the background level of the presence of seven priority toxic metals (Cr, Ni, Pb, As, Cd, Cu, Zn) in the chemical phases of the overburden topsoil of a bituminous deposit prior to mining activities through the speciation analysis. The grab samples of overburden topsoil were initially obtained and homogenized to composites based on locations for the subsequent sequential extraction procedure (SEP). The specific physico-chemical properties of the sampled soils were simultaneously determined to complement the SEP inferential analysis. The results obtained showed that most metals were spatially bounded to the Fe-Mn oxides (reducible phase) followed by the organic (oxidizable) and the carbonates phases, respectively. Fractionally, the dominant soil texture in the studied area was sand (55.45%); however, the colloidal organic matter and Fe-Mn oxide phases played the dominant roles in the sorption activities of the selected metals. The soil chemical phase with the least metal pool was the exchangeable (water/salt) soluble fraction. The overall assessment revealed that the geogenic heavy metals in the topsoil posed no threats since a marginal fraction of the metals existed in the bio-available form in non-toxic concentrations in the order of Pb > Zn > Cu, while the potential mobility of metals showed that Zn was preferentially higher than Pb and Cu, respectively.
Mineral Processing
Y. Kianinia; M. R. Khalesi; M. Abdollahy; A. Khodadadi Darban
Abstract
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that ...
Read More
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that consume the free cyanide and compete with gold. In this paper, a physico-chemical approach is presented to estimate the liberation and exposure of cyanicides to the leaching solution, and then prediction of the speciation of all possible related species in the solution. The results obtained show that this methodology not only could successfully estimate the gold leaching and cyanide consumption based on the mineralogical data with a lower number of parameters compared to existing empirical models, but also offers the prediction of formation of all the possible complexes that could be used for optimization purposes.