H. Haeri; A. R Khaloo; K. Shahriar; M. Fatehi Marji; P. Moaref vand
Abstract
In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions ...
Read More
In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions of the pre-existing micro-cracks, which can grow and propagate within a rock-like specimen. The micro-crack initiation and propagation in rock-like specimens is investigated using the Fortran Code TDDCRACK2D, which is a 2D displacement discontinuity method (DDM) for crack analysis, a boundary element computer code based on the linear elastic fracture mechanics (LEFM) theory. In the present work, a higher order DDM is used to implement special crack tip elements for estimation of the stress intensity factors (SIFs) and crack initiation angles for the wing-crack problems initiated at different angles from the original micro-crack tips in an infinite specimen under a uniform tension.
M. Behnia; K. Goshtasbi; M. Fatehi Marji; A. Golshani
Abstract
Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. ...
Read More
Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation technique are used to study the hydraulic fracture propagation and its interaction with the pre-existing cracks and discontinuities in an elastic rock mass. The maximum tangential stress criterion (or -criterion) and the strain energy density criterion (SED) are used to obtain the fracture path and the results of both criteria are compared with each other. The comparison of numerical method with the results brought in the literature shows a good performance of the method in the case of interacting cracks.