M. Hosseini Nasab; M. Noaparast; H. Abdollahi
Abstract
Due to the decreasing production of nickel and cobalt from sulfide sources, the Ni and Co extraction from the oxide ores (laterites) have become more prevalent. In this research work, the effects of calcination prior to leaching, acid concentration, percent solid, pH, and stirring speed on the nickel ...
Read More
Due to the decreasing production of nickel and cobalt from sulfide sources, the Ni and Co extraction from the oxide ores (laterites) have become more prevalent. In this research work, the effects of calcination prior to leaching, acid concentration, percent solid, pH, and stirring speed on the nickel and cobalt recoveries from an iron-rich laterite ore sample were investigated using different organic acids. Then the response surface methodology was implemented in order to optimize the various parameters. By the design of experiments, the compound optimal concentrations of the three different organic acids (gluconic acid: lactic acid: citric acid with a ratio of 1:2:3) were 3.18 M, and S/L = 0.1, pH = 0.5, and the stirring speed = 386 rpm. With the aid of kinetic studies, a temperature of 75 °C, and a test time of 120 minutes, the highest nickel and cobalt recoveries were 25.5% and 37.6%, respectively. In the optimal conditions, the contribution of the percent solids to the nickel recovery was the most and negative, after which the contribution of pH was negative, and finally, the acid concentration had a positive effect. In the optimal conditions, the acid concentration, pH, and solid content were, respectively, important in the cobalt recovery. The SEM results showed that the surface of feed and residue particles in the optimal conditions was not significantly different, and the laboratory data was fitted to a shrinking core model. The results obtained indicated that the reaction rate was controlled by the diffusion reaction at the particle surface, and the activation energies of 11.09 kJ/mol for nickel and 28.04 kJ/mol for cobalt were consistent with this conclusion
Mineral Processing
H. Shadi Naghadeh; M. Abdollahy; A. Khodadadi Darban; P. Pourghahramani
Abstract
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation ...
Read More
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation was used in the present work for this purpose. After 90 minutes of mechanical activation, the X-ray amorphization phase and the maximum BET surface area were increased to 93.4% and 8.4 m2/g, respectively. The Williamson-Hall plot indicated that the crystallite size was decreased and the lattice strain was increased as a function of the milling intensity. A volume-weighted crystallite size of 64 nm and a lattice strain of 0.9% were achieved from the mechanically activated sample for 90 minutes. The leaching efficiency of REEs with 32% nitric acid at 85 °C was increased from 25% for the initial sample to about 95% for the activated samples. The first stage reaction rate constants for La, Nd, and Ce were increased from 8 × 10-7, 9 × 10-7,and 6 × 10-7 for the initial sample to 1.3 × 10-3, 9 × 10-4, and 7 × 10-4 for the mechanically activated samples at 60 °C, respectively. Also the apparent activation energy for La, Nd, and Ce for the initial sample was found to be about 210, 231, and 229 kJ/mol, which were decreased to 120, 91, and 80 kJ/mol, respectively, after 20 minutes of mechanical activation in an argon atmosphere. The results obtained suggested mechanical activation as an appropriate pre-treatment method for dissolution of REEs from phosphate concentrates containing refractory REE minerals at a lower cost and a higher recovery rate.
Mineral Processing
Y. Kianinia; M. R. Khalesi; M. Abdollahy; A. Khodadadi Darban
Abstract
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that ...
Read More
Processing of gold ores with high sulfide minerals is problematic as they consume cyanide and reduce gold leaching. Optimization of gold leaching and cyanide consumption requires a methodology to estimate the amount of exposed cyanicides, their leaching kinetics, and speciation of cyanide complexes that consume the free cyanide and compete with gold. In this paper, a physico-chemical approach is presented to estimate the liberation and exposure of cyanicides to the leaching solution, and then prediction of the speciation of all possible related species in the solution. The results obtained show that this methodology not only could successfully estimate the gold leaching and cyanide consumption based on the mineralogical data with a lower number of parameters compared to existing empirical models, but also offers the prediction of formation of all the possible complexes that could be used for optimization purposes.
Mineral Processing
S. Shahraki; M. Karamoozian; A. Azizi
Abstract
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration ...
Read More
Sulfur is one of the most significant impurities in coal, which reduces the quality of coal and also results in environmental pollution. This work was aimed to investigate the removal of sulfur from coal by the leaching method employing parameters expected to affect the removal rate such as acid concentration (10-30%), temperature (40-80 °C), and reaction time (40-100 min). A response surface methodology using Box-Behnken design was employed to maximize, model, and evaluate the factors affecting the desulfurization process. The results obtained indicated that the desulfurization value increased with increase in the acid concentration, temperature, and reaction time. A quadratic model with a high correlation coefficient (R2=0.98) is proposed and developed for the relationship between the removal value and the influential factors. The modeling results demonstrated that the significance degree of factors was in the order of acid concentration>temperature>reaction time. It was also found that the maximum desulfurization (about 87%) could be obtained under the optimal conditions of acid concentration=25%, temperature=80 °C, and leaching time=84 minutes.
M. Hasani; Seyed M. J. Koleini; A. Khodadadi
Abstract
In the present work, the extraction of zinc from a sphalerite concentrate using sodium nitrate as an oxidant in a sulfuric acid solution was investigated. The effective parameters such as the temperature, sulfuric acid and sodium nitrite concentrations, stirring speed, particle size, and solid/liquid ...
Read More
In the present work, the extraction of zinc from a sphalerite concentrate using sodium nitrate as an oxidant in a sulfuric acid solution was investigated. The effective parameters such as the temperature, sulfuric acid and sodium nitrite concentrations, stirring speed, particle size, and solid/liquid (S/L) ratio were analyzed. The dissolution rate increased with increase in the sulfuric acid and sodium nitrite concentrations and temperature but decreased with increase in the particle size and S/L ratio. Moreover, the stirring speed had a significant effect on the leaching rate. Under the optimum conditions, 74.11% of zinc was obtained. The kinetic data obtained was analyzed by the shrinking core model (SCM). A new SCM variant captured the kinetic data more appropriately. Based on this model, the activities of the reactants control the diffusion but the two concentrations affect the second order reaction rate or diffusion in both directions. At 75 ˚C, the R2 values in the surface chemical reactions and diffusion were 0.78 and 0.89, respectively. Using the new model, however, the R2 value 0.989 was obtained. The reaction orders with respect to [H2SO4], [NaNO3], S/L ratio, and particle size were 1.603, 1.093, ‒0.9156, and ‒2.177, respectively. The activation energy for the dissolution was 29.23 kJ/mol.
soghra salehi; M. Noaparast; S.Z. Shafaei; A. Amini; A. Heidarnia
Abstract
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination ...
Read More
In this work, hydrochloric acid is used to remove iron impurities in the bauxite ore contained in the diasporite mineral located in the Sari region. The bauxite ore was calcined at different temperatures and times, and then dissolved in a hydrochloric acid solution. After determining the optimum calcination conditions in 1 h at 900 °C, the response surface methodology (RSM) with four factors in five levels was employed in order to evaluate the effects of calcination temperature, calcination time, acid concentration, and leaching time on the iron leaching efficiency. A quadratic model is proposed using this methodology to correlate the leaching variables. The test results indicate that the model is consistent with the experimental data, and that the most important varriables involved are the acid concentration, leaching time, and squared term of calcination temperature (A2). The maximum iron recovery was 94.97%, and the Fe grade in the solids remained was 2.35% at the calcination temperature of 900 °C, a calcination time of 1 hour, and a leaching time of 2 h in hydrochloric acid (6 mM).
Hojat Naderi; Mahmoud Abdollahy; Navid Mostoufi
Abstract
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. ...
Read More
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. The leaching rate increased with increase in the temperature. About 50% of the Cu recovery was obtained after 2 hours of reactor leaching at 75 o C using the -0.5 mm size fraction. Also about 50% of the Cu recovery was obtained after 60 days of column leaching for the +4-8 mm size fraction. For the fine-particle leaching, the first leaching step was fast, and the rate controlling step was diffusion through the liquid film. The results obtained show that as the leaching proceeds, the chemical reaction control appears. Finally, accumulation of the elemental sulfur layer in the solid product together with the jarosite precipitate causes change in the controlling mechanism to solid diffusion. For the coarse-particle leaching, diffusion through the solid product appeared from the initial days of leaching.
Ali Entezari; Mohammad Karamoozian; M Eskandari Nasab
Abstract
The possibility of selective leaching process was investigated during molybdenite flue dust leaching to recover its rhenium content. The results show that addition of alcohols to water makes the medium less favorable for molybdenum transfer into aqueous phase. On the other hand, addition of small amounts ...
Read More
The possibility of selective leaching process was investigated during molybdenite flue dust leaching to recover its rhenium content. The results show that addition of alcohols to water makes the medium less favorable for molybdenum transfer into aqueous phase. On the other hand, addition of small amounts of alcohols (5-15%) makes a noticeable separation of rhenium over molybdenum, but by increasing the alcohol content recovery of both metals decreases. More than 90% of Re transferred into leach solution but the corresponding amount for Mo was only about 0.5%.