Mineral Processing
Seyyed Mohsen Zamzami; Javad Vazifeh Mehrabani
Abstract
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, ...
Read More
In this research, solid phase settling process from the liquid phase were optimized simultaneously on the different responses, using the response surface methodology (RSM). The effect of solid percentage, flocculant dosage, temperature, and pulp pH were evaluated on the responses of solid settling velocity, water turbidity, viscosity and density of settled pulp. The results showed that by increasing the flocculant dosage from 0.5 to 3.5 g/ton, settled pulp viscosity decreases from 49.05 cSt to 17.54 cSt. The higher values of pulp pH as well as low amount of solid percentage resulted in high water turbidity, which shows the lack of contact between flocs and suspended particles. The results indicated that the pulp solid percentage and the flocculants dosage are the most significant parameters on the responses. Optimum test conditions were obtained in industrial mode by using 5 g/t flocculant, solid percentage 23.96%, pH=7.5 temperature of the pulp 21.5°C in which condition, settling rate, pulp viscosity, pulp density and water turbidity were predicted to be 13.23 cm/min, 5.1 cSt, 1.61 g/cm3 and 15.7 NTU respectively. Repetition test in the model predicted optimum condition was carried out and verified the predicted optimized condition.
B. Alipenhani; A. Majdi; H. Bakhshandeh Amnieh
Abstract
The present work aims at implementing Response Surface Methodology (RSM) in order to generate a statistical model for Minimum Required Caving Span (MRCS) and estimate both the individual and mutual effects of the rock mass parameters on rock mass cavability. The adequate required data is obtained from ...
Read More
The present work aims at implementing Response Surface Methodology (RSM) in order to generate a statistical model for Minimum Required Caving Span (MRCS) and estimate both the individual and mutual effects of the rock mass parameters on rock mass cavability. The adequate required data is obtained from the result of numerical modeling. In this work, various arrays of numerical simulations (480 models) are carried out using the UDEC software in order to study the rock mass cavability thoroughly. The effect of each individual parameter and their mutual effect on MRCS are investigated by means of ANOVA. ANOVA indicates that all the chosen parameters (depth, dip of the joint, number of joints, angle of friction of the joint surface, and joint spacing) highly affect MRCS. In other words, the results of ANOVA are in high agreement with the results of the conventional sensitivity analysis. Moreover, a combination of joint spacing and joint inclination has the highest mutual effect on MRCS, and a combination of undercut depth and joint spacing has the lowest effect on MRCS.
M. Hosseini Nasab; M. Noaparast; H. Abdollahi
Abstract
Due to the decreasing production of nickel and cobalt from sulfide sources, the Ni and Co extraction from the oxide ores (laterites) have become more prevalent. In this research work, the effects of calcination prior to leaching, acid concentration, percent solid, pH, and stirring speed on the nickel ...
Read More
Due to the decreasing production of nickel and cobalt from sulfide sources, the Ni and Co extraction from the oxide ores (laterites) have become more prevalent. In this research work, the effects of calcination prior to leaching, acid concentration, percent solid, pH, and stirring speed on the nickel and cobalt recoveries from an iron-rich laterite ore sample were investigated using different organic acids. Then the response surface methodology was implemented in order to optimize the various parameters. By the design of experiments, the compound optimal concentrations of the three different organic acids (gluconic acid: lactic acid: citric acid with a ratio of 1:2:3) were 3.18 M, and S/L = 0.1, pH = 0.5, and the stirring speed = 386 rpm. With the aid of kinetic studies, a temperature of 75 °C, and a test time of 120 minutes, the highest nickel and cobalt recoveries were 25.5% and 37.6%, respectively. In the optimal conditions, the contribution of the percent solids to the nickel recovery was the most and negative, after which the contribution of pH was negative, and finally, the acid concentration had a positive effect. In the optimal conditions, the acid concentration, pH, and solid content were, respectively, important in the cobalt recovery. The SEM results showed that the surface of feed and residue particles in the optimal conditions was not significantly different, and the laboratory data was fitted to a shrinking core model. The results obtained indicated that the reaction rate was controlled by the diffusion reaction at the particle surface, and the activation energies of 11.09 kJ/mol for nickel and 28.04 kJ/mol for cobalt were consistent with this conclusion