Rock Mechanics
Hossein Azad; Hamid Chakeri; Hadi Shakeri
Abstract
Mechanized tunnelling in soft soils often results in ground settlement both around the tunnel and at the surface, which can potentially damage urban infrastructure and surrounding buildings. Several geological and operational factors influence the extent of ground settlement. This paper investigates ...
Read More
Mechanized tunnelling in soft soils often results in ground settlement both around the tunnel and at the surface, which can potentially damage urban infrastructure and surrounding buildings. Several geological and operational factors influence the extent of ground settlement. This paper investigates the actual ground settlement caused by over 10 kilometers of tunnelling along Tabriz Metro Line 2, with a particular focus on the materials and positions of the tunnelling machine. The results show that 55-60% of the total settlements occur behind the shield of the tunnelling machine, which is consistent with Thewes’ (2009) diagram. The surrounding soil was categorized, and using data from settlement pins, the actual Volume Loss (VL) was analyzed across three geological sections consisting of sandy, clayey, and mixed materials. The findings reveal that volume loss in sandy materials is greater than in clayey and mixed soils, at approximately 1.02%. Additionally, the volume loss in mixed soils was calculated to be 0.82%, while in clay soils, it was 0.53%. To assess the impact of different materials on surface settlement, numerical modeling was carried out using Plaxis 3D software. The numerical results, considering volume losses of 1.05% for sandy materials, 0.8% for mixed materials, and 0.5% for clay materials, closely matched the actual settlement data.
Rock Mechanics
Faezeh Barri; Hamid Chakeri; Mohammad Darbor; Hamed Haghkish
Abstract
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty ...
Read More
Excavation with Tunnel Boring Machine (TBM) in urban environments can have risks, such as ground surface settlement. The empty space between the cutterhead and the segment should be filled with suitable grout during the excavation. Nowadays, using grout behind the segment and other fillers fill the empty space behind the segment and reduce the amount of ground surface settlement. Undoubtedly, using a grout with appropriate mechanical behavior can be a suitable substitute for excavated soil in mechanized tunneling. In this research, the mechanical behavior of the grout behind the segment during injection into the space between the soil and the segment and its mixture with the soil is studied. Also, the effect of mechanical properties of grout mixed with soil on the ground surface settlement is investigated using numerical modeling. The components of two-component grout of this study comprises Sufian type 2 cement with 28-day strength of 44 MPa and density of 3050 kg/m3, Salafchegan bentonite with density of 2132 kg/m3 and precipitator of liquid sodium silicate with density of the solution 1500 kg/m3. The results of the laboratory studies indicated that mixing the grout and soil increases the mechanical properties of grout significantly. Increasing the soil in the mixture of soil and grout up to 40% increases the uniaxial compressive strength up to 300%, the elasticity of modulus up to 156% and the cohesion of the mixture up to 100%. On the other hand, based on the results of numerical modeling, the proper injection pressure can significantly reduce the ground surface settlement. Increasing the injection pressure from 0 to 120 kPa has a 17% influence on the reduction of ground surface settlement.