Mineral Processing
Chol Ung Ryom; Kwang Hyok Pak; Il Chol Sin; Kwang Chol So
Abstract
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, ...
Read More
Shaking table and flotation are often used in scheelite (CaWO4) beneficiation, and usually they are applied in sequence. In this paper, analysis of mineral movement have been investigated in shaking table in which pulp was conditioned with xanthate as a collector and fed, heavy scheelite was concentrated, while heavy pyrite removed directly on the deck by the action of collector. Artificially mixed mineral with 1% scheelite and 2% pyrite was used in CFD simulations and experiments. Through CFD simulations, it was found that pyrite particles, which were hydrophobic by collector, were attached to the water-air interface and subjected to upward buoyancy, which increased the density difference between scheelite and pyrite particles and enabled the separation of both minerals in the shaking table. The experiment results showed that the concentrate grade in conventional table concentration was 23.5% WO3, the separation efficiency was 77.89%, while the concentrate grade of scheelite in the table concentration of xanthate presence was 65.0% WO3 and the separation efficiency was 80.88%. The combination of flotation in table with collector addition not only eliminated the flotation to remove pyrite after table but also resulted in a lower rate of scheelite loss.
B. Jodeiri Shokri; H. Dehghani; R. Shamsi; F. Doulati Ardejani
Abstract
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate ...
Read More
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) algorithms. For this, after gathering an appropriate database, some of the most significant parameters such as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input data. Then 30% of the data is chosen as the training data randomly, while the validation data is included in 70% of the dataset. Subsequently, the relationships are proposed using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH prove that these relationships can be successfully validated. The results obtained also reveal that GEP can be applied as a new-fangled method in order to predict the AMD generation process.