[1]. Chatterjee, S., Mustapha, H. and Dimitrakopoulos, R. (2016). Fast wavelet-based stochastic simulation using training images. Computational Geosciences. 20 (3): 399-420.
[2]. Deutsch, C.V. and Journel, A.G. (1998). GSLIB Geostatistical software library and user’s guide; Oxford University Press, New York.
[3]. Sinclair, A.J. and Blackwell, G.H. (2002). Applied mineral inventory estimation. Cambridge University Press.
[4]. Blackwell, G.H., Anderson, M. and Ronson, K. (1999). Simulated grades and open pit mine planning–resolving opposed positions. In Proc. 28th Symp. On Application of computers and operations research to the minerals industry, Colorado School of Mines, Golden, Colo, pp. 205-215.
[5]. Caers, J. and Zhang, T. (2004). Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models, Vol. 112, pp.213-234.
[6]. Guardiano, F.B. and Srivastava, R.M. (1993). Multivariate geostatistics: beyond bivariate moments. In Geostatistics Troia’92 (pp. 133-144). Springer, Dordrecht.
[7]. Tran, T.T. (1994). Improving variogram reproduction on dense simulation grids. Computers & Geosciences, 20(7-8): 1161-1168.
[8]. Roberts, E.S. (1998). Programming abstractions in C: A second course in computer science: AddisonWesley, Reading, MA, 819 p.
[9]. Strebelle, S. (2000). Sequential simulation drawing structure from training images. Ph.D. Thesis, Stanford University, Stanford, CA, USA.
[10]. Caers, J. (2001). Geostatistical reservoir modelling using statistical pattern recognition. Journal of Petroleum Science and Engineering. 29 (3-4): 177-188.
[11]. Journel, A.G. (2002). Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses. Mathematical geology. 34 (5): 573-596.
[12]. Zhang, T. and Journel, A. (2002). Merging prior structural interpretation and local data: the
multiple-point geostatistics answer. Stanford Center for Reservoir Forecasting Annual Report
16. Stanford University, Stanford, CA.
[13]. Arpat, B.G. (2004). Sequential simulation with patterns, Ph.D. thesis, Stanford University, Stanford, CA., USA.
[14]. Arpat, G.B. and Caers, J. (2007). Conditional simulation with patterns. Mathematical Geology. 39 (2): 177-203.
[15]. Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology. 34 (1): 1-21.
[16]. Remy, N., Journel, A.G., Boucher, A. and Wu, J. (2007). Stanford Geostatistics Modeling Software.
[17]. Zhang, T. (2006). Filter-based Training Pattern Classification for spatial pattern Simulation, Ph.D. thesis, Stanford University, Stanford, CA., USA.
[18]. Wu, J., Boucher, A. and Zhang, T. (2008). A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers & Geosciences. 34 (12): 1863-1876.
[19]. Mariethoz, G., Renard, P. and Straubhaar, J. (2010). The direct sampling method to perform multiple‐point geostatistical simulations. Water Resources Research. 46 (11).
[20]. Tahmasebi, P., Hezarkhani, A. and Sahimi, M. (2012). Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences. 16 (3): 779-797.
[21]. Abdollahifard, M.J. and Faez, K. (2013). Stochastic simulation of patterns using Bayesian pattern modeling. Computational Geosciences. 17 (1): 99-116.
[22]. Faucher, C., Saucier, A. and Marcotte, D. (2013). A new patchwork simulation method with control of the local-mean histogram. Stochastic environmental research and risk assessment. 27 (1): 253-273.
[23]. Tahmasebi, P., Sahimi, M. and Caers, J. (2014). MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Computers & Geosciences, 67: 75-88.
[24]. Moura, P., Laber, E., Lopes, H., Mesejo, D., Pavanelli, L., Jardim, J., Thiesen, F. and Pujol, G. (2017). LSHSIM: A Locality Sensitive Hashing based method for multiple-point geostatistics. Computers & Geosciences, 107: 49-60.
[25]. Bavand Savadkoohi, M., Tokhmechi, B., Gloaguen, E. and Arab-Amiri, A.R., 2019. A comprehensive benchmark between two filter-based multiple-point simulation algorithms. Journal of Mining and Environment. 10 (1): 139-149.
[26]. Rezaee, H., Asghari, O., Koneshloo, M. and Ortiz, J.M. (2014). Multiple-point geostatistical simulation of dykes: application at Sungun porphyry copper system, Iran. Stochastic environmental research and risk assessment, 28(7): 1913-1927.
[27]. Rezaee, H., Mariethoz, G., Koneshloo, M. and Asghari, O. (2013). Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Computers & Geosciences, 54: 293-308.
[28]. Hashemi, S., Javaherian, A., Ataee-pour, M., Tahmasebi, P. and Khoshdel, H. (2014). Channel characterization using multiple-point geostatistics, neural network, and modern analogy: A case study from a carbonate reservoir, southwest Iran. Journal of Applied Geophysics, 111: 47-58.
[29]. Tuanfeng, Z. (2008). Incorporating Geological Conceptual Models and Interpretations into Reservoir Modeling Using Multiple-Point Geostatistics, Earth Science Frontiers. 15 (1): 26 - 35.
[30]. Lai, Y.J., Liu, T.Y. and Hwang, C.L. (1994). Topsis for MODM. European journal of operational research, 76(3): 486-500.
[31]. Deng, H., Yeh, C.H. and Willis, R.J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research. 27 (10): 963-973.
[32]. Li, D.F. and Yang, J.B. (2004). Fuzzy linear programming technique for multiattribute group decision making in fuzzy environments. Information Sciences, 158: 263-275.
[33]. Li, D.F. 2005. Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of computer and System Sciences. 70 (1): 73-85.
[34]. Opricovic, S. and Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research. 156 (2): 445-455.
[35]. Opricovic, S. and Tzeng, G.H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research, 178(2): 514-529.
[36]. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53: 49-57.
[37]. Feng, W. and Wu, S. (2016). A multiple-point geostatistical method based on geological vector information. Arabian Journal of Geosciences. 9 (10): 562.
[38]. Huang, T., Lu, D.T., Li, X. and Wang, L. (2013). GPU-based SNESIM implementation for multiple-point statistical simulation. Computers & Geosciences, 54: 75-87.
[39]. Yang, L., Hou, W., Cui, C. and Cui, J. (2016). GOSIM: a multi-scale iterative multiple-point statistics algorithm with global optimization. Computers & Geosciences, 89: 57-70.
[40]. Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3): 234-281.
[41]. Boroushaki, S. and Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers and Geosciences, 34: 399-410.
[42]. Hajkowicz, S., Young, M. and MacDonald, D.H. (2000). Supporting decisions: Understanding natural resource management assessment techniques (No. 00_003). Policy and Economic Research Unit, CSIRO Land and Water, Adelaide, Australia.
[43]. Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64: 126-130.
[44]. Mohaghar, A., Sahebi, I.G. and Arab, A. (2017). Appraisal of humanitarian supply chain risks using best-worst method. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering. 11 (2): 309-314.
[45]. Torabi, S.A., Giahi, R. and Sahebjamnia, N. (2016). An enhanced risk assessment framework for business continuity management systems. Safety science, 89: 201-218.
[46]. Hosseinali, F. and Alesheikh, A.A. (2008). Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences, 5: 1187-1198.
[47]. Lee, A.H.I., Chen, W.C. and Chang, C.J. (2008). A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Systems with Applications, 34: 96-107.
[48]. San Cristóbal, J.R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable energy. 36 (2): 498-502.
[49]. Rezaie, K., Ramiyani, S.S., Nazari-Shirkouhi, S. and Badizadeh, A. (2014). Evaluating performance of Iranian cement firms using an integrated fuzzy AHP–VIKOR method. Applied Mathematical Modelling. 38 (21-22): 5033-5046.
[50]. Gupta, P., Mehlawat, M.K. and Grover, N. (2016). Intuitionistic fuzzy multi-attribute group decision-making with an application to plant location selection based on a new extended VIKOR method. Information Sciences, 370: 184-203.
[51]. Shokr, I., Amalnick, M.S. and Torabi, S.A. (2016). An Augmented Common Weight Data Envelopment Analysis for Material Selection in High-tech Industries. International Journal of Supply and Operations Management. 3 (2): 1234.
[52]. Mousavi, S.M., Torabi, S.A. and Tavakkoli-Moghaddam, R. (2013). A hierarchical group decision-making approach for new product selection in a fuzzy environment. Arabian Journal for Science and Engineering, 38(11): 3233-3248.
[53]. Hezarkhani, A. and Williams-Jones, A.E. (1998). Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: Evidence from fluid inclusions and stable isotopes. Economic Geology, 93: 651 - 670.
[54]. Mehrpartou, M. (1993). Contributions to the geology, geochemistry, Ore genesis and fluid inclusion investigations on Sungun Cu-Mo porphyry deposit, northwest of Iran. PhD Thesis. University of Hamburg, Germany.
[55]. Hezarkhani, A., Williams-Jones, A.E. and Gammons, C.H. (1999). Title of subordinate
document. In: Factors controlling copper solubility and chalcopyrite deposition in the Sungun
porphyry copper deposit, Iran. Mineralium deposita, 34: 770 – 783.
[56]. Calagari, A.A. (2004). Geochemical, stable isotope, noble gas, and fluid inclusion studies of mineralization and alteration at Sungun porphyry copper deposit, East Azarbaidjan, Iran: Implication for genesis. Ph.D. thesis, Manchester University, Manchester, England.
[57]. Liu, Y. (2006). Using the snesim program for multiple-point statistical simulation, Computers & Geosciences, 32: 1544 – 1563.
[58]. Peredo, O. and Ortiz, J.M. (2011). Parallel implementation of simulated annealing to reproduce multiple-point statistics, Computers & Geosciences, 37: 1110 - 1121.
[59]. Journel, A.G. and Alabert, F.A. (1989). Non-Gaussian data expansion in the Earth Sciences, In Terra Nova, 1: 123 - 134.
[60]. Dimitrakopoulos, R., Mustapha, H. and Gloaguen, E. (2010). High-order statistics of spatial random fields: exploring spatial Cumulants for modeling complex non-Gaussian and non-linear phenomena. Mathematical Geosciences. 42 (1): 65.
[61]. De Iaco, S. and Maggio, S. (2011). Validation techniques for geological patterns simulations based on variogram and multiple-point statistics. Mathematical Geosciences. 43 (4): 483-500.
[62]. Greco, S., Figueira, J. and Ehrgott, M. (2016). Multiple criteria decision analysis. New York: Springer.
[63]. Tzeng, G.H. and Huang, J.J. (2011). Multiple attribute decision making: methods and applications. Chapman and Hall/CRC.