[1]. Alimoradi, A. (2006). A comparison between RMR values of TSP-203 and the real values. MSc. Thesis in Mine Exploration Engineering (Third Chapter), Shahrood University of Technology, 45-64.
[2]. Alimoradi, A., Moradzadeh, A., Naderi, R., Zad Salehi, M. and Etemadi, A. (2008). Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks, Tunnelling and Underground Space Technology, 23, 711-717.
[3]. Alimoradi, A., Angorani, S., Ebrahimzadeh, M. and Shariat Panahi, M. (2011). Magnetic inverse modelling of a dike using the artificial neural network approach, Near Surface Geophysics, 9, 339-347.
[4]. Bishop, C.M. (1995). Neural networks for pattern recognition, 1st edition, Oxford Clarendon.
[5]. Brown, W.M., Gedeon, T.D., Groves, D.I. and Barnes, R.G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping, Auatrailian Journal of Earth Science, 47, 757-770.
[6]. Brown, W.M., Gedeon, T.D. and Groves, D.I. (2003). Use of noise to augment training data: A neural network method of mineral potential mapping in regions of limited known deposit examples, Journal of Natural Resource Research, 12, 141-152.
[7]. Calderón-Macías, C., Sen, M.K. and Stoffa, P.L. (2001). Artificial neural networks for parameter estimation in geophysics, Geophysical Prospecting, 48, 21–47.
[8]. Demuth, H., Beale, M. (2002). Neural network toolbox for use with MATLAB, Version 3.0.
[9]. Douglas, W., Oldenburg, Yaoguo, Li. (1999). Estimating depth of investigation in dc resistivity and IP surveys, Geophysics, 64, 403-416.
[10]. El-Qady, G., Ushijima, K. (2001). Inversion of DC resistivity data using neural networks, Geophysical Prospecting, 49, 417-430.
[11]. Hagan, M.T., Demuth, H.B. and Beale, M. (1996). Neural network design, PWS Publishing Company, Boston, MA.
[12]. Hasani Pak, A., Shoja-at, B. (2000). Metal-nonmetal ore modeling and their exploration application, University of Tehran.
[13]. Hosseinali, F. and Alesheikh, A.A. (2008). Weighting spatial information in GIS for copper mining exploration, Journal of Applied Science, 5, 1187-1198.
[14]. Loke, M. H. (1999). Electrical imaging surveys for environmental and engineering studies: A practical guide to 2-D and 3-D surveys, 1-4.
[15]. Nazri, M.N., Abdullah Khan, M.Z.R. (2013). A new Levenberg Marquardt based back propagation algorithm trained with Cuckoo search, Procedia Technology, 11, 18-23.
[16]. Porwal, A. (2006). Mineral potential mapping with mathematical geological models, PhD thesis, University of Utrecht.
[17]. Poulton, M., El-Fouly, A. (1991). Preprocessing GPR signatures for cascading neural network classification, 61st SEG meeting, Houston, USA, Expanded Abstracts 507–509.
[18]. Poulton, M., Sternberg, K., and Glass, C. (1992). Neural network pattern recognition of subsurface EM images, Journal of Applied Geophysics, 29, 21–36.
[19]. Sanchez, J.P., Chica-Olmo, M., and Abarca-Hernandez, F. (2003). Artificial neural network as a tool for mineral potential mapping with GIS, Journal of Remote Sensing, 24, 1151-1156.
[20]. Selley, R.C., Cocks, R.M. and Plimer, I.R. (2005). Encyclopedia of geology, Vol. 1, 1st edition, Elsevier Ltd, Oxford.
[21]. Skabar, A.A. (2005). Mapping mineralization probabilities using multilayer perceptrons, Journal of Natural Resource Research, 14, 109-123.
[22]. Singer, D.A. and Kouda, R.A. (1997). Classification of mineral deposit into types using mineralogy with a probabilistic neural network, Nonrenewable Resources, 6, 27-32.
[23]. Singer, D.A. and Kouda, R.A. (1999). Comparison of the weights-of-evidence method and probabilistic neural networks, Natural Resources Research, 8, 287-298.
[24]. Singh, U.K., Tiwari, R.K. and Singh, S.B. (2005). One-dimensional inversion of geoelectrical resistivity sounding data using artificial neural networks – a case study, Computational Geoscience, 31, 99– 108.
[25]. Spichak, V.V., Popova, I.V. (2000). Artificial neural network inversion of MT – data in terms of 3D earth macro – parameters, Geophysical Journal International, 42, 15–26.
[26]. Yang, X.S. and Deb, S. (2010). Engineering optimization by Cuckoo Search, International Journal of Mathematical Modelling and Numerical, 1, 330-343.
[30]. Yuval, Douglas, W., Oldenburg. (1995). DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments, Journal of Applied Geophysics, 34, 187-198.