[1]. O’Sullivan, D., Newman, A. (2015). Optimization based heuristics for underground mine scheduling, European Journal of Operational Research, 241 (1): 248–259.
[2]. Shenavar, M. Ataee-pour, M. Rahmanpour M. (2020). A New Mathematical Model for Production Scheduling in Sub-level Caving Mining Method; Journal of Mining and Environment (JME); Vol. 11, No. 3, 2020, 765-778. DOI: 10.22044/jme.2020.9139.1804.
[3]. Ataee-pour, M. (2005). A critical survey of the existing stope layout optimization techniques. Journal of Mining Science, 41(5), 447-466.
[4]. Alford, C., Brazil, M., and Lee, D.H. (2007). Optimization in underground mining. Handbook of Operations Research in Natural Resources. Weintraub, A., Romero, C., Bjorndal, T., and Epstein, R. (Eds.). Springer, New York. 561–577.
[5]. Erdogan, G., Cigla, M., Topal E., and Yavuz M. (2017). Implementation and comparison of four stope boundary optimization algorithms in an existing underground mine, International Journal of Mining, Reclamation and Environment.
[6]. Riddle, J.M. (1977). A dynamic programming solution of a block-caving mine layout. Proceedings of the Fourteenth International Symposium on the Application of Computers and Operations Research in the Mineral Industry, October 4-8, Society for Mining, Metallurgy and Exploration Inc., Colorado. 767–780.
[7]. Ovanic, J. and Young, D.S. (1995). Economic optimization of stope geometry using separable programming with special branch and bound techniques. Third Canadian Conference on Computer Applications in the Mineral Industry. Balkema, Rotterdam. 129–135.
[8]. Serra, J.P. (1982). Image Analysis and Mathematical Morphology Academic Press, New York.
[9]. Deraisme, J., Fouquet, D.C., and Fraisse, H. (1984). Geostatistical ore body model for computer optimization of profits from different underground mining methods. Proceedings of the 18th International Conference on the Application of Computers and Operations Research in the Mining Industry (APCOM), London, England. 583–590.
[10]. Alford, C. (1996). Optimization in underground mine design. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33 (5): 220A–220A.
[11]. Ataee-pour, M. (2000). A heuristic algorithm to optimize stope boundaries. PhD thesis, University of Wollongong, Australia.
[12]. Cheimanoff, N.M., Deliac, E.P., and Mallet, J.L. (1989). Geocad: an alternative CAD and artificial intelligence tool that helps moving from geological resources to mineable reserves. 21st International Symposium on the Application of Computers and Operations Research in the Mineral Industry. Society for Mining, Metallurgy and Exploration Inc., Colorado. 471–478.
[13]. Manchuk, J. and Deutsch, C. (2008). Optimizing stope designs and sequences in underground mines. SME Transactions, 324. 67–75.
[14]. Bai, X., Marcotte, D., and Simon, R. (2014). A heuristic sublevel stope optimizer with multiple raises, The Journal of the Southern African Institute of Mining and Metallurgy, 114, 427–434.
[15]. Dimitrakopoulos R., Grieco and Nikki (2009). Stope design and geological uncertainty: quantification of risk in conventional designs and a probabilistic alternative; Journal of Mining Science, 45(2).
[16]. Jamshidi M. and Osanloo M. (2018). UPL determination of multi-element deposits with grade uncertainty using a new block economic value calculation approach, Journal of Mining & Environment (JME), Vol. 9, No. 1, 2018, 61-72., DOI: 10.22044/jme.2017.5763.1387.
[17]. Dehghani, H., Ataee-pour, M., Esfahanipour, A. (2014). Evaluation of the mining projects under economic uncertainties using multidimensional binomial tree, Resources Policy, 39(March), 124-133.
[18]. Mokhtarian, A.M. and Sattarvand, J. (2016). Commodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method, J. of Mining & Environment, 7(2), 215-227.
[19]. Aminrostamkolaee, B., Scroggs, J.S., SadatBorghei, M., Safdari-Vaighani, A., Mohammadi, T., and Pourkazemi, M. H. (2017). Valuation of a hypothetical mining project under commodity price and rate uncertainties by using numerical methods, Resources Policy, 52, 296-307.
[21]. Grieco, N.J. (2004). Risk analysis of optimal stope design: incorporating grade uncertainty, PhD thesis, University of Queensland, Brisbane.
[22]. Grieco, N.J. (2007). Managing grade risk in stope design optimization: probabilistic mathematical programming model and application in sublevel stoping, IMM Transactions, 116.
[23]. Dirk, R., Kazakidis V., and Dimitrakopoulos, R., (2018). Stochastic optimization of long-term block cave scheduling with hang-up and grade uncertainty, International Journal of Mining, Reclamation and Environment, ISSN: 1748-0930 (Print) 1748-0949.
[24]. Sotoudeh F., Ataei M., Kakaie R., and Pourrahimian Y. (2020). Application of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty, Journal of Mining and Environment (JME), Vol. 11, No. 3, 2020, 695-709., DOI: 10.22044/jme.2019.7333.1582.
[25]. Mohseni M., Ataei M., and Kakaie R. (2020). Journal of Mining and Environment (JME), Vol. 11, No. 4, 2020, 977-989, DOI: 10.22044/jme.2019.8506.1729.
[26]. Datamine Software Help Files. www.dataminesoftware.com.
[27]. Yunsel, T.Y. (2012). Risk quantification in grade variability of gold deposits using sequential Gaussian simulation, J. Cent. South Univ. 19. 3244−3255.
[28]. Erdogan, G., Cigla, M., Topal E., and Yavuz M. (2017). Implementation and comparison of four stope boundary optimization algorithms in an existing underground mine, International Journal of Mining, Reclamation and Environment, 31:6, 389-403, DOI:
10.1080/17480930.2017.1331083
[29]. Dimitrakopoulos R. (1998). Conditional simulation algorithms for modelling orebody uncertainty in open-pit optimization. Int J Surf Min Reclam Environ 12(4):173–179.
[30]. Benninga, S. (2008). Financial Modeling (3rd Ed.). London, England: The MIT Press.