[1]. Bhandari, S. (1997). Engineering rock blasting operations.
[2]. Raina AK, Murthy VMSR, Soni AK. (2014) Fly-rock in bench blasting: a comprehensive review. Bull Eng Geol Environ. doi:10.1007/s10064-014-0588-6.
[3]. Raina, A.K., Haldar, A., Chakraborty, A.K., Choudhury, P.B., Ramulu, M., and Bandyopadhyay, C. (2004). Human response to blast-induced vibration and air-overpressure: an Indian scenario. Bulletin of Engineering Geology and the Environment. 63 (3): 209-214.
[4]. Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., and Makhtar, A.M. (2014). A novel approach for blast-induced fly-rock prediction based on imperialist competitive algorithm and artificial neural network. The Scientific World Journal, 2014.
[5]. Hajihassani, M., Armaghani, D.J., Monjezi, M., Mohamad, E.T., and Marto, A. (2015). Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences. 74 (4): 2799-2817.
[6]. Armaghani, D.J., Mohamad, E.T., Hajihassani, M., Abad, S.A.N.K., Marto, A., and Moghaddam, M.R. (2016). Evaluation and prediction of fly-rock resulting from blasting operations using empirical and computational methods. Engineering with Computers. 32 (1): 109-121.
[7]. Rustan, A. (1998). Rock blasting terms and symbols.
[8]. Wyllie D.C., Mah C., 2004. Rock Slope Engineering, Fourth Edition: Fourth edition. Taylor and Francis. Retrieved from http://books.google.com.pk/books?id=4Gd7Hg2tz-sC.
[9]. Workman L., 1992. Wall Control. Retrieved from http://intrawww.ing.puc.cl/siding/public/ingcursos/cursos_pub/descarga.phtml?id_curso_ic=1781&id_archivo=69274.
[10]. Monjezi M. and Dehghani H., 2008. Evaluation of effect of blasting pattern parameters on back-break using neural networks. International Journal of Rock Mechanics and Mining Sciences. 45 (8):1446-1453. http://doi.org/10.1016/j. ijrmms.2008.02.007.
[11]. Muhammad, K. and Shah, A. (2017). Minimizing back-break at the Dewan Cement limestone quarry using an artificial neural network. Archives of Mining Sciences. 62 (4).
[12]. Kamali, M. and Ataei, M. (2010). Prediction of blast induced ground vibrations in Karoun III power plant and dam: a neural network. Journal of the Southern African Institute of Mining and Metallurgy. 110 (8): 481-490.
[13]. Ghasemi, E., Sari, M., and Ataei, M. (2012). Development of an empirical model for predicting the effects of controllable blasting parameters on fly-rock distance in surface mines. International Journal of Rock Mechanics and Mining Sciences. 52: 163-170.
[14]. Ghasemi, E., Ataei, M., and Hashemolhosseini, H. (2013). Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. Journal of Vibration and Control. 19 (5): 755-770.
[15]. Taji, M., Ataei, M., Goshtasbi, K., and Osanloo, M. (2013). ODM: a new approach for open-pit mine blasting evaluation. Journal of vibration and control. 19 (11): 1738-1752.
[16]. Ataei, M. and Kamali, M. (2013). Prediction of blast-induced vibration by adaptive neuro-fuzzy inference system in Karoun 3 power plant and dam. Journal of Vibration and Control. 19 (12): 1906-1914.
[17]. Ghasemi, E., Amini, H., Ataei, M., and Khalokakaei, R. (2014). Application of artificial intelligence techniques for predicting the fly-rock distance caused by blasting operation. Arabian Journal of Geosciences. 7 (1): 193-202.
[18]. Sari, M., Ghasemi, E., and Ataei, M. (2014). Stochastic modeling approach for the evaluation of back-break due to blasting operations in open pit mines. Rock Mechanics and Rock Engineering. 47 (2): 771-783.
[19]. Ataei, M. and Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining and Environment. 8 (2): 291-304.
[20]. Hoseini, S.M., Sereshki, F., and Ataei, M. (2018). A quantitative model for evaluation and classification of blastings in open-pit mines. Journal of Mining and Environment. 9 (1): 127-141.
[21]. Mottahedi, A., Sereshki, F., and Ataei, M. (2018). Development of over-break prediction models in drill and blast tunneling using soft computing methods. Engineering with computers. 34 (1): 45-58.
[22]. Khandelwal, M. and Singh, T.N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. Journal of sound and vibration. 289 (4-5): 711-725.
[23]. Rezaei, M., Monjezi, M., and Varjani, A.Y. (2011). Development of a fuzzy model to predict fly-rock in surface mining. Safety science. 49 (2): 298-305.
[24]. Lundborg, N. (1974). The hazards of fly-rock in rock blasting. Swedish Detonic Research Foundation, Reports DS, 12.
[25]. Hajihassani, M., Armaghani, D.J., Sohaei, H., Mohamad, E.T., and Marto, A. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics. 80: 57-67.
[26]. Faradonbeh, R.S., Monjezi, M., and Armaghani, D.J. (2016). Genetic programing and non-linear multiple regression techniques to predict back-break in blasting operation. Engineering with computers. 32 (1): 123-133.
[27]. Ebrahimi, E., Monjezi, M., Khalesi, M.R., and Armaghani, D.J. (2016). Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment. 75 (1): 27-36.
[28]. Monjezi, M., Ahmadi, Z., Varjani, A.Y., and Khandelwal, M. (2013). Back-break prediction in the Chadormalu iron mine using artificial neural network. Neural Computing and Applications. 23 (3): 1101-1107.
[29]. Sayadi, A., Monjezi, M., Talebi, N., and Khandelwal, M. (2013). A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and back-break. Journal of Rock Mechanics and Geotechnical Engineering. 5 (4): 318-324.
[30]. Mohammadnejad, M., Gholami, R., Sereshki, F., and Jamshidi, A. (2013). A new methodology to predict backbreak in blasting operation. International journal of rock mechanics and mining sciences. (1997). 60: 75-81.
[31]. Esmaeili, M., Osanloo, M., Rashidinejad, F., Bazzazi, A.A., and Taji, M. (2014). Multiple regression, ANN and ANFIS models for prediction of back-break in the open-pit blasting. Engineering with computers. 30 (4): 549-558.
[32]. Monjezi, M., Bahrami, A., Varjani, A.Y., and Sayadi, A.R. (2011). Prediction and controlling of fly-rock in blasting operation using artificial neural network. Arabian Journal of Geosciences. 4 (3-4): 421-425.
[33]. Monjezi, M., Khoshalan, H.A., and Varjani, A.Y. (2012). Prediction of fly-rock and back-break in open-pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences. 5 (3): 441-448.
[34]. Monjezi, M., Bahrami, A., and Yazdian Varjani, A. (2010). Simultaneous prediction of fragmentation and fly-rock in blasting operation using artificial neural networks. International journal of rock mechanics and mining sciences (1997). 47 (3): 476-480.
[35]. Monjezi, M. and Dehghani, H. (2008). Evaluation of effect of blasting pattern parameters on back-break using neural networks. International Journal of Rock Mechanics and Mining Sciences. 45 (8): 1446-1453.
[36]. Belkina, A.C., Ciccolella, C.O., Anno, R., Halpert, R., Spidlen, J., and Snyder-Cappione, J.E. (2019). Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nature communications. 10 (1): 1-12.
[37]. Zhu, W., Webb, Z. T., Mao, K., and Romagnoli, J. (2019). A deep learning approach for process data visualization using t-distributed stochastic neighbor embedding. Industrial and Engineering Chemistry Research. 58 (22): 9564-9575.
[38]. Hinton, G. and Roweis, S.T. (2002, December). Stochastic neighbor embedding. In NIPS (Vol. 15, pp. 833-840).
[39]. Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research. 9 (11).
[40]. Rogovschi, N., Kitazono, J., Grozavu, N., Omori, T., and Ozawa, S. (2017, May). t-Distributed stochastic neighbor embedding spectral clustering. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1628-1632). IEEE.
[41]. Weinberger, K.Q., Sha, F., and Saul, L.K. (2004, July). Learning a kernel matrix for non-linear dimensionality reduction. In Proceedings of the twenty-first international conference on Machine learning (p. 106).
[42]. Tao, K., Cao, J., Wang, Y., Mi, J., Ma, W., and Shi, C. (2020). Chemometric Classification of Crude Oils in Complex Petroleum Systems using t-Distributed Stochastic Neighbor Embedding Machine Learning Algorithm. Energy and Fuels, 34(5), 5884-5899.
[43]. Liu, H., Yang, J., Ye, M., James, S.C., Tang, Z., Dong, J., and Xing, T. (2021). Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data. Journal of Hydrology, 597, 126146.
[44]. Arnø, M.L., Godhavn, J.M., and Aamo, O.M. (2021). At-bit estimation of rock density from real-time drilling data using deep learning with online calibration. Journal of Petroleum Science and Engineering, 109006.
[45]. Dorogush, A.V., Ershov, V., and Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.
[46]. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., and Gulin, A. (2017). CatBoost: unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516.
[47]. Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., ... and Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041.
[48]. Hancock, J. and Khoshgoftaar, T.M. (2020, August). Medicare fraud detection using Catboost. In 2020 IEEE 21st international conference on information reuse and integration for data science (IRI) (pp. 97-103). IEEE.
[49]. Zhong, C., Geng, F., Zhang, X., Zhang, Z., Wu, Z., and Jiang, Y. (2021, May). Shear Wave Velocity Prediction of Carbonate Reservoirs Based on CatBoost. In 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 622-626). IEEE.
[50]. Cardoso, A., Leitão, J., and Teixeira, C. (2018, September). Using the Jupyter notebook as a tool to support the teaching and learning processes in engineering courses. In International Conference on Interactive Collaborative Learning (pp. 227-236). Springer, Cham.
[51]. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12, 2825-2830.
[52] Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A.B., Alzakari, N. and Kurdi, H. (2021). Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Applied Sciences. 11 (2): 796.
[53]. Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society. 63 (11): 1309-1313.
[54]. Kamran, M. (2021). A Probabilistic Approach for Prediction of Drilling Rate Index using Ensemble Learning Technique. Journal of Mining and Environment.
[55]. Kamran, M., Bacha, S., and Mohammad, N. (2021). A Stochastic Model Updating Gold Reserve Estimation by Using Monte Carlo Simulation. Journal of Mining and Environment.
[56]. Guo, H., Nguyen, H., Bui, X.N., and Armaghani, D.J. (2021). A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Engineering with Computers. 37 (1): 421-435.