Document Type : Original Research Paper

Authors

1 Department of Mining and Metallurgical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran.

2 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this work, an effective methodology is introduced for modeling the fatigue crack propagation in linear elastic brittle media. The displacement discontinuity method is used to accomplish the analysis, and the boundaries are discretized with quadratic elements in order to predict the stress intensity factors near the crack tips. This procedure is implemented through 2D linear elastic fracture mechanics. The normal and shear displacement discontinuity around the crack tip is applied to compute the mixed-mode stress intensity factors. The crack growth is incremental, and for each increment of extension, there is no need to use a re-meshing procedure. This method has benefits over the finite element method due to its simplicity in meshing. The crack growth direction is assessed using the maximum principal stress theory. In these analyses, a repetition method is used in order to estimate the correct path of crack propagation. Therefore, the different lengths of incremental growth do not affect the crack growth path analysis. The results are exhibited for several examples with different geometries to demonstrate the efficiency of the approach for analyzing the fatigue crack growth. The accuracy represents that this formulation is ideal for describing the fatigue crack growth problems under the mixed-mode conditions.

Keywords

[1]. Le, J.L., Manning, J. and Labuz, J.F. (2014). Scaling of fatigue crack growth in rock. Int J Rock Mech Min Sci. 72:71–9. https://doi.org/https://doi.org/10.1016/j.ijrmms.2014.08.015.
[2]. Li, G., Moelle, K.H.R. and Lewis, J.A. (1992). Fatigue crack growth in brittle sandstones. Int J Rock Mech Min Sci 29:469–77. https://doi.org/10.1016/0148-9062(92)92631-L.
[3]. Attewell, P.B. and Farmer, I.W. (1973). Fatigue behaviour of rock. Int J Rock Mech Min Sci Geomech Abstr. 10:1–9. https://doi.org/https://doi.org/10.1016/0148-9062(73)90055-7.
[4]. Richard, H.A. and Sander, M. (2016). Fatigue crack growth. Springer.
[5]. Liu, Y. and Dai, F. (2021). A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading. J Rock Mech Geotech Eng. 13:1203–30. https://doi.org/https://doi.org/10.1016/j.jrmge.2021.03.012.
[6]. Fan, J. (2017). Research on fatigue damage and dilatancy properties for salt rock under discontinuous cyclic loading. Chongqing University.
[7]. Dowling, N.E. (2009). Mechanical Behavior of Materials, Vol. 46, Pearson Education. https://doi.org/10.5860/choice.46-6830.
[8]. Al-Mukhtar, A.M. and Merkel, B. (2015). Simulation of the crack propagation in rocks using fracture mechanics approach. J Fail Anal Prev. 15:90–100. https://doi.org/10.1007/s11668-014-9907-2.
[9]. Chang, G., Hua, X., Zhang, J. and Li, P. (2021). The Mechanism of Rock Mass Crack Propagation of Principal Stress Rotation in the Process of Tunnel Excavation. Shock Vib. 4698368. https://doi.org/10.1155/2021/4698368.
[10]. Campbell, F.C. (2012). Fatigue and Fracture: Understanding the Basics. ASM International.
[11]. Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017). A review paper about experimental investigations on failure behaviour of non-persistent joint. Geomech Eng. 13:535–70. https://doi.org/10.12989/gae.2017.13.4.535.
[12]. Rao, B.N. and Rahman, S. (2000). An efficient meshless method for fracture analysis of cracks. Comput Mech. 26:398–408. https://doi.org/10.1007/s004660000189.
[13]. Pathak, H., Singh, A. and Singh, I.V. (2013). Fatigue crack growth simulations of 3-D problems using XFEM. Int J Mech Sci. 76:112–31. https://doi.org/10.1016/j.ijmecsci.2013.09.001.
[14]. Ammendolea, D., Greco, F., Lonetti, P., Blasi, P.N. and Pascuzzo, A. (2020). Crack growth propagation modeling based on moving mesh method and interaction integral approach. Procedia Struct Integr. 28:1981–91. https://doi.org/10.1016/j.prostr.2020.11.022.
[15]. Boljanović, S. and Maksimović, S. (2011). Analysis of the crack growth propagation process under mixed-mode loading. Eng Fract Mech. 78:1565–76. https://doi.org/10.1016/j.engfracmech.2011.02.003
[16]. Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018). Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material. Rock Mech Rock Eng. 51:173–85. https://doi.org/10.1007/s00603-017-1310-3.
[17]. Aliabadi, M.H. (2003). The boundary element method, volume 2, applications in solids and structures, Vol. 2, John Wiley and Sons. https://doi.org/10.1002/bate.200301300.
[18]. Cen, Z. and Maier, G. (1992). Bifurcations and instabilities in fracture of cohesive‐softening structures: a boundary element analysis. Fatigue Fract Eng Mater Struct. 15:911–28. https://doi.org/10.1111/j.1460-2695.1992.tb00066.x.
[19]. Gerstle, W.H. (1986). Finite and boundary element modelling of crack propagation in two-and three dimensions using interactive computer graphics. Cornell University, ProQuest Diss Theses Ph.D.
[20]. Ingraffea, A.R., Blandford, G.E. and Liggett, J.A. (1983). Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. ASTM Spec, Tech, Publ, ASTM International. 407–26. https://doi.org/10.1520/stp37085s.
[21]. Doblare, M., Espiga, F., Gracia, L. and Alcantud, M. (1990). Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech. 37:953–67. https://doi.org/10.1016/0013-7944(90)90020-H.
[22]. Wang, P.B. and Yao, Z. (2006). Fast multipole DBEM analysis of fatigue crack growth. Comput Mech. 38:223–33. https://doi.org/10.1016/j.mechrescom.2005.06.006.
[23]. Yan, X. (2006). A boundary element modeling of fatigue crack growth in a plane elastic plate. Mech Res Commun. 33:470–81. https://doi.org/10.1016/j.mechrescom.2005.06.006.
[24]. Portela, A., Aliabadi, M.H. and Rooke DP. (1993). Dual boundary element incremental analysis of crack propagation. Comput Struct. 46:237–47. https://doi.org/10.1016/0045-7949(93)90189-K.
[25]. Mi, Y. and Aliabadi, M.H. (1994). Three-dimensional crack growth simulation using BEM. Comput Struct. 52:871–8. https://doi.org/10.1016/0045-7949(94)90072-8.
[26]. Mi, Y. and Aliabadi, M.H. (1995). An automatic procedure for mixed‐mode crack growth analysis. Commun Numer Methods Eng. 11:167–77. https://doi.org/10.1002/cnm.1640110210.
[27]. Citarella, R. and Cricrì, G. (2010). Comparison of DBEM and FEM crack path predictions in a notched shaft under torsion. Eng Fract Mech. 77:1730–49. https://doi.org/10.1016/j.engfracmech.2010.03.012.
[28]. Leonel, E.D. and Venturini, W.S. (2011). Multiple random crack propagation using a boundary element formulation. Eng Fract Mech. 78:1077–90. https://doi.org/10.1016/j.engfracmech.2010.11.012.
[29]. Li, J., Sladek, J., Sladek, V. and Wen, P.H. (2020). Hybrid meshless displacement discontinuity method (MDDM) in fracture mechanics: static and dynamic. Eur J Mech. 83:104023. https://doi.org/10.1016/j.euromechsol.2020.10402.
[30]. Crouch, S.L., Starfield, A.M. and Rizzo, F.J. (1983). Boundary Element Methods in Solid Mechanics. J Appl Mech. 50:704–5. https://doi.org/10.1115/1.3167130.
[31]. Fatehi Marji, M., Gholamnejad, J. and Eghbal, M. (2011). On the crack propagation mechanism of brittle substances under various loading conditions. 11th Int, Multidiscip, Sci, geo-conference. Albena, Bulg. 1:561-8. https://doi.org/10.5593/sgem2011/s02.131.
[32]. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013). Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method. Proc, 13th Int, Conf, Fract, China. 2:1414-23.
[33]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). The effect of layers elastic parameters on hydraulic fracturing propagation utilizing displacement discontinuity method. J Anal Numer Methods Min Eng. 2:1–13.
[34]. Haeri, H., Khaloo, A. and Marji, M.F. (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arab J Geosci. 8:5897–908. https://doi.org/10.1007/s12517-014-1598-1.
[35]. Wen, P.H. (1996). Dynamic fracture mechanics: displacement discontinuity method. Southampton, United Kingdom Billerica, MA Comput Mech Publ Eng. 29.
[36]. Zhao, M., Dang, H., Fan, C. and Chen, Z. (2017). Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 1. Int J Solids Struct. 117:14–25. https://doi.org/10.1016/j.ijsolstr.2017.04.016.
[37]. Li, K., Jiang, X., Ding, H. and Hu, X. (2019). Three-Dimensional Propagation Simulation and Parameter Analysis of Rock Joint with Displacement Discontinuity Method. Math Probl Eng. https://doi.org/10.1155/2019/3164817.
[38]. Haeri, H., Khaloo, A.R., Shahriar, K., Fatehi Marji, M. and Moarefvand, P.A. (2015). Boundary element analysis of crack-propagation mechanism of micro-cracks in rock-like specimens under a uniform normal tension. J Min Environ. 6:73–93. https://doi.org/10.22044/jme..2015.362.
[39]. Marji, M.F. Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method. (2015). J Cent South Univ. 22:1045–54. https://doi.org/10.1007/s11771-015-2615-6.
[40]. Fatehi Marji, M. and Hosseini-Nasab, H. (2005). Application of higher order displacement discontinuity method using special crack tip elements in rock fracture mechanics. 20th World Min, Congr, Expo, Tehran, Iran. 699–704.
[41]. Haeri, H. Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM. (2015). Comput Concr. 16:881–96. https://doi.org/10.12989/cac.2015.16.6.881.
[42]. Haeri, H. Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions. (2015). Strength Mater. 47:618–32. https://doi.org/10.1007/s11223-015-9698-z.
[43]. Sih, G.C. (1974). Strain-energy-density factor applied to mixed mode crack problems. Int J Fract. 10:305–21. https://doi.org/10.1007/BF00035493.
[44]. Erdogan, F. and Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(4): 519-525. https://doi.org/10.1115/1.3656897.
[45]. Hussain, M.A, Pu, S.L. and Underwood, J. (1974). Strain energy release rate for a crack under combined mode I and mode II. Fract, Anal, Proc, Natl, Symp, Fract, Mech, part II, ASTM International. 2:2-27. https://doi.org/10.1520/stp33130s.
[46]. Alneasan, M., Behnia, M. and Bagherpour, R. (2020). Applicability of the classical fracture mechanics criteria to predict the crack propagation path in rock under compression. Eur J Environ Civ Eng. 24:1761–84. https://doi.org/10.1080/19648189.2018.1485597.
[47]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. J Min Environ. 2. https://doi.org/10.22044/jme.2012.15.
[48]. Crouch, S.L. (1976). Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng. 10:301–43. https://doi.org/10.1002/nme.1620100206.
[49]. Shou, K.J. and Crouch, S.L. (1995). A higher order displacement discontinuity method for analysis of crack problems. Int J Rock Mech Min Sci Geomech Abstr. 32: 49–55. https://doi.org/10.1016/0148-9062(94)00016-V.
[50]. Marji, M.F., Hosseini Nasab, H. and Kohsary, A.H. (2006). On the uses of special crack tip elements in numerical rock fracture mechanics. Int J Solids Struct. 43:1669–92. https://doi.org/10.1016/j.ijsolstr.2005.04.042.
[51]. Marji, M.F. and Dehghani, I. (2010). Kinked crack analysis by a hybridized boundary element/boundary collocation method. Int J Solids Struct. 47:922–33.
[52]. Paris, P. and Erdogan, F. (1963). A critical analysis of crack propagation laws. J Fluids Eng Trans ASME. 85:528–33. https://doi.org/10.1115/1.3656900.
[53]. Pustejovsky, M.A. (1979). Fatigue crack propagation in titanium under general in-plane loading I: experiments. Eng Fract Mech. 11:9–15. https://doi.org/10.1016/0013-7944(79)90025-0.
[54]. Alshoaibi AM and Fageehi YA. Simulation of Quasi-Static Crack Propagation by Adaptive Finite Element Method. Metals (Basel) 2021;11:98. https://doi.org/10.3390/met11010098.