[4]. Richard, H.A. and Sander, M. (2016). Fatigue crack growth. Springer.
[6]. Fan, J. (2017). Research on fatigue damage and dilatancy properties for salt rock under discontinuous cyclic loading. Chongqing University.
[9]. Chang, G., Hua, X., Zhang, J. and Li, P. (2021). The Mechanism of Rock Mass Crack Propagation of Principal Stress Rotation in the Process of Tunnel Excavation. Shock Vib. 4698368.
https://doi.org/10.1155/2021/4698368.
[10]. Campbell, F.C. (2012). Fatigue and Fracture: Understanding the Basics. ASM International.
[11]. Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017). A review paper about experimental investigations on failure behaviour of non-persistent joint. Geomech Eng. 13:535–70.
https://doi.org/10.12989/gae.2017.13.4.535.
[14]. Ammendolea, D., Greco, F., Lonetti, P., Blasi, P.N. and Pascuzzo, A. (2020). Crack growth propagation modeling based on moving mesh method and interaction integral approach. Procedia Struct Integr. 28:1981–91.
https://doi.org/10.1016/j.prostr.2020.11.022.
[16]. Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018). Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material. Rock Mech Rock Eng. 51:173–85.
https://doi.org/10.1007/s00603-017-1310-3.
[19]. Gerstle, W.H. (1986). Finite and boundary element modelling of crack propagation in two-and three dimensions using interactive computer graphics. Cornell University, ProQuest Diss Theses Ph.D.
[20]. Ingraffea, A.R., Blandford, G.E. and Liggett, J.A. (1983). Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. ASTM Spec, Tech, Publ, ASTM International. 407–26.
https://doi.org/10.1520/stp37085s.
[21]. Doblare, M., Espiga, F., Gracia, L. and Alcantud, M. (1990). Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech. 37:953–67.
https://doi.org/10.1016/0013-7944(90)90020-H.
[31]. Fatehi Marji, M., Gholamnejad, J. and Eghbal, M. (2011). On the crack propagation mechanism of brittle substances under various loading conditions. 11th Int, Multidiscip, Sci, geo-conference. Albena, Bulg. 1:561-8.
https://doi.org/10.5593/sgem2011/s02.131.
[32]. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013). Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method. Proc, 13th Int, Conf, Fract, China. 2:1414-23.
[33]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). The effect of layers elastic parameters on hydraulic fracturing propagation utilizing displacement discontinuity method. J Anal Numer Methods Min Eng. 2:1–13.
[34]. Haeri, H., Khaloo, A. and Marji, M.F. (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks. Arab J Geosci. 8:5897–908.
https://doi.org/10.1007/s12517-014-1598-1.
[35]. Wen, P.H. (1996). Dynamic fracture mechanics: displacement discontinuity method. Southampton, United Kingdom Billerica, MA Comput Mech Publ Eng. 29.
[36]. Zhao, M., Dang, H., Fan, C. and Chen, Z. (2017). Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 1. Int J Solids Struct. 117:14–25.
https://doi.org/10.1016/j.ijsolstr.2017.04.016.
[37]. Li, K., Jiang, X., Ding, H. and Hu, X. (2019). Three-Dimensional Propagation Simulation and Parameter Analysis of Rock Joint with Displacement Discontinuity Method. Math Probl Eng.
https://doi.org/10.1155/2019/3164817.
[38]. Haeri, H., Khaloo, A.R., Shahriar, K., Fatehi Marji, M. and Moarefvand, P.A. (2015). Boundary element analysis of crack-propagation mechanism of micro-cracks in rock-like specimens under a uniform normal tension. J Min Environ. 6:73–93.
https://doi.org/10.22044/jme..2015.362.
[39]. Marji, M.F. Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method. (2015). J Cent South Univ. 22:1045–54.
https://doi.org/10.1007/s11771-015-2615-6.
[40]. Fatehi Marji, M. and Hosseini-Nasab, H. (2005). Application of higher order displacement discontinuity method using special crack tip elements in rock fracture mechanics. 20th World Min, Congr, Expo, Tehran, Iran. 699–704.
[44]. Erdogan, F. and Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(4): 519-525.
https://doi.org/10.1115/1.3656897.
[45]. Hussain, M.A, Pu, S.L. and Underwood, J. (1974). Strain energy release rate for a crack under combined mode I and mode II. Fract, Anal, Proc, Natl, Symp, Fract, Mech, part II, ASTM International. 2:2-27.
https://doi.org/10.1520/stp33130s.
[46]. Alneasan, M., Behnia, M. and Bagherpour, R. (2020). Applicability of the classical fracture mechanics criteria to predict the crack propagation path in rock under compression. Eur J Environ Civ Eng. 24:1761–84.
https://doi.org/10.1080/19648189.2018.1485597.
[47]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. J Min Environ. 2.
https://doi.org/10.22044/jme.2012.15.
[48]. Crouch, S.L. (1976). Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng. 10:301–43.
https://doi.org/10.1002/nme.1620100206.
[51]. Marji, M.F. and Dehghani, I. (2010). Kinked crack analysis by a hybridized boundary element/boundary collocation method. Int J Solids Struct. 47:922–33.
[54]. Alshoaibi AM and Fageehi YA. Simulation of Quasi-Static Crack Propagation by Adaptive Finite Element Method. Metals (Basel) 2021;11:98.
https://doi.org/10.3390/met11010098.