Document Type : Original Research Paper

Authors

1 Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

The goal of this research work is to recognize the metallic mineralization potential in the Ahar 1:100,000 sheet (NW Iran) using the remote sensing data based on determination of the alteration zones. This area is located in the Ahar-Arasbaran metallogenic zone as a significant metallogenic zone in Iran and Caucasus. In this research work, the Landsat-7 ETM+ and advanced space borne thermal emission and reflection radiometer (ASTER) multispectral remote sensing data was interpreted by the least square fit (LS-Fit), spectral angle mapper (SAM), and matched filtering (MF) algorithms in order to detect the alteration zones associated with the metallic mineralization. The results obtained by these methods show that there are index-altered minerals for the argillic, silicification, advanced argillic, propylitic, and phyllic alteration zones. The main altered areas are situated in the SE, NE, and central parts of this region.

Keywords

Main Subjects

[1]. Ghorbani, M., 2013. The economic geology of Iran: Mineral deposits and natural resource. Netherlands: Springer. DOI:10.1007/978-94-007-5625-0.
[2]. Fakhari, S., Jafarirad, A.R., Afzal, P., and Lotfi, M., 2019. Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iranian Journal of Earth Sciences 11, 80-92. https://dx.doi.org/10.30495/ijes.2019.664780.
[3]. Pour, A.B., Park, Y., Park, T.S., Hong, J.K., Hashim, M., and Woo, J., Ayoobi, I., 2018a. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci., 16, pp. 23-46. https://doi.org/10.1016/j.polar.2018.02.004.
[4]. Pour, A.B., Park, T.S., Park, Y., Hong, J.K., Zoheir, B., Pradhan, B., Ayoobi, I., and Hashim, M., 2018b. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens., 10, 1186. https://doi.org/10.3390/rs10081186.
[5]. Clark, R.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing; Rencz, A., Ed.;Wiley and Sons Inc.: New York, NY, USA, 3, 3-58.
[6]. Hunt, G.R. and Ashley, R.P., 1979. Spectra of altered rocks in the visible and near-infrared. Journal of Econ. Geol., 74, 1613-1629. https://doi.org/10.2113/gsecongeo.74.7.1613.
[7]. Rowan, L. C., Crowley, J. K., Schmidt, R. G., and Mars, J. C., 2000. Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States. Journal of Geochemical Exploration, 68(3), pp. 145-166. https://doi.org/10.1016/S0375-6742 (99)00081-3.
[8]. Abdelsalam, M.G., Stern, R.J., and Woldegabriel, G.B., 2000. Mapping gossans in arid regions with Landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea. J. Afr. Earth Sci., 30, pp. 903-916. https://doi.org/10.1016/S0899-5362 (00)00059-2.
[9]. Kusky, T.M. and Ramadan, T.M., 2002. Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: An integrated field, Landsat TM, and SIR-C/X SAR approach. J. Afr. Earth Sci., 35, 107-121. https://doi.org/10.1016/S0899-5362 (02)00029-5.
[10]. Rajesh, H.M., 2008. Mapping Proterozoic unconformity-related uranium deposits in the Rockole area, Northern Territory, Australia using Landsat ETM+. Ore Geol. Rev., 33, 382-396. http://dx.doi.org/10.1016/j.oregeorev.2007.02.003.
[11]. Beiranvand Pour, A. and Hashim, M., 2015.  Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, South-Eastern Islamic Republic of Iran. Journal of Taibah University Sciences, 9, 155-166. https://doi.org/10.1016/j.jtusci.2014.11.008.
[12]. Beiranvand Pour, A., Park, Y.; Park, T.S., Hong, J.K., Hashim, M., Woo, J., and Ayoobi, I., 2019. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int., 34, 785-816. http://dx.doi.org/10.1080/10106049.2018.1434684.
[13]. Abrams, M. and Hook, S.J., 1995. Simulated ASTER data for geologic studies. IEEE Trans. Journal of Geosci. Remote Sens. 33, pp. 692-699. https://doi.org/10.1109/36.387584.
[14]. Mars, J.C. and Rowan, L.C., 2006. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere., 2, 161-186. https://doi.org/10.1130/GES00044.1.
[15]. Yazdi, Z., Jafari Rad, A., Aghazadeh, M., and Afzal, P., 2018. Alteration Mapping for Porphyry Copper Exploration using ASTER and QuickBird Multispectral Images, Sonajeel Prospect, NW Iran. Journal of the Indian Society of Remote Sensing 46 (10), 1581–1593. https://doi.org/10.1007/s12524-018-0811-1.
[16]. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., and Jafari, M.R., 2019. Determination of Hydrothermal Alteration Zones using Remote Sensing Methods in Tirka Area, Toroud, NE Iran. Journal of the Indian Society of Remote Sensing, 47 (11), 1817-1830. https://doi.org/10.1007/s12524-019-01032-3.
[17]. Carranza, E.J.M., 2011. Geo-computation of mineral exploration targets. Journal of Comput. Geosci., 37, 1907-1916. https://doi.org/10.1016/j.cageo.2011.11.009.
[18]. Nabavy, H., 1976. An introduction to the geology of Iran. Geological Survey of Iran publication, Tehran, 109 p (in Persian).
[19]. Alavi, M., 1991. Sedimentary and structural characteristics of the paleo-Tethys remnants in north-eastern Iran. Journal of Geol. Soc. America Bull., 103, 983-992. https://doi.org/10.1130/0016-7606(1991)103%3C0983:SASCOT%3E2.3.CO;2.
[20]. Agha Nabaty, E., 2004. Geology of Iran. Geological survey and mineral exploration organization of Iran publication, Tehran, 586 pp. (in Persian).
[21]. Hosseinzadeh, G. H., Calagari, A. A., Moayyed, M., Hadj-Alilu, B., and Moazzen, M., 2010. Study of hypogene alteration and copper mineralization in Sonajil area (east of Herris, east Azarbaidjan). Journal of Geosci., 74, 3-12 (in Persian).
[22]. Hassanpour, Sh., 2017. The Sungun porphyry magma resource and the 120,000-year difference in age between the main stock and the first dike: New evidence from 87Sr/86Sr, 143Nd/144Nd and Pb, SHRIMP U–Pb zircon dating in NW Iran. Iranian Journal of Earth Sciences 9, 94-104.
[23]. Sheikhrahimi, A., Pour, B.A., Pradhan, B., and Zoheir, B., 2019. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER remote sensing data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 63, 3315-3332. https://doi.org/10.1016/j.asr.2019.01.035.
[24]. Guha, A., Yamaguchi, Y., Chatterjee, S., Rani, K., and Vinod Kumar, K., 2019. Emittance spectroscopy and broadband thermal remote sensing applied to phosphorite and its utility in geoexploration: A study in the parts of Rajasthan, India. Journal of Remote Sens., 11, 1003. https://doi.org/10.3390/rs11091003.
[25]. Simmons, V., Jahangiryar, F., Moazzen, M., and Ravaghi A., 2016. Investigation on the Distribution of Gold Across the Ahar area (NW Iran) using Stream-Sediment and BLEG Methods. Journal of Resource Geology, 66, 213-225. https://doi.org/10.1111/rge.12098.
[26]. Dilek, Y., Imamverdiyev, N., and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int. Journal of Geol. Rev. 52, 536-578. http://dx.doi.org/10.1080/00206810903360422.
[27]. Moritz, R., Johannes,M.,Maria, O., Dave, S.,Massimo, Ch., Nino, P., Vladimer, G., Ramaz,M., Rafael, M., Rodrig, T., Arman, V., Samvel, H., Vagif, F., and Mamoy, M., 2011. Major Cu, Au and Mo deposits of the Lesser Caucasus: products of diverse geodynamic settings. Swiss Geoscience Meeting, Symposium 2: Mineralogy Petrology Geochemistry, 2. 16, 3-4.
[28]. Jamali, H., Yaghubpur, A., Mehrabid, B., Dilek, Y., Daliran, F., and Meshkani, S.A., 2012. Petrogenesis and tectono-magmatic setting of Meso-Cenozoic magmatism in Azerbaijan province, Northwestern Iran. Petrology, New Perspectives and Applications INTECH. Journal of Croatia, 39-56. http://dx.doi.org/10.5772/24782.
[29] Jamali, H. and Mehrabi, B., 2015. Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Journal of Ore Geology Reviews, 65, 487-501. https://doi.org/10.1016/j.oregeorev.2014.06.017.
[30]. Yetkin, E., Toprak, V., and Suezen, M.L., 2004. Alteration Mapping by Remote Sensing: Application to Hasandağ-Melendiz Volcanic, Complex. Geo-Imagery Bridging Continents 10th ISPRS Congress, Istanbul.
[31]. Haroni, H.A. and Lavafan, A., 2007. Integrated analysis of Aster and Landsat ETM data to map exploration targets in the Muteh Gold Mining Area, Iran.
[32]. Malekzadeh, A., Karimpour, M.H., Stern C.R., and Mazaheri, S.A., 2009. Hydrothermal Alteration Mapping in SW Birjand, Iran, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Image processing. Journal of Applied Sciences, 9, 829-842. http://dx.doi.org/10.3923/jas.2009.829.842.
[33]. Chen, X., Warner, T. A., and Campagna, D. J., 2007. Integrating visible, near-infrared and shortwave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Journal of Remote Sensing of Environment, 110, 344-356. https://doi.org/10.1016/j.rse.2007.03.015.
[34]. Murphy, R. J., Monteiro, S. T., and Schneider, S., 2012. Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors. IEEE trans. Geoscience and Remote Sensing, 50, 3066-3080. http://dx.doi.org/10.1109/TGRS.2011.2178419.
[35]. Kruse, F.A., Bordman, J.W., and Huntington, J.F., 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Journal of Geosci. Remote Sens., 41, 1388-1400. http://dx.doi.org/10.1109/TGRS.2003.812908.
[36]. Debba, P., Carranza, E. J. M., van der Meer, F. D., and Stein, A., 2006. Abundance estimation of spectrally similar minerals by using derivative spectra in simulated annealing. Geoscience and Remote Sensing, 44, pp. 3649-3658. https://doi.org/10.1109/TGRS.2006.881125.
[37]. Rezaei, A., Hassani, H., Moarefvand, P., and Golmohammadi, A., 2019. Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods, GEOLOGY, ECOLOGY, AND LANDSCAPES, 4 (1), 59-70. http://dx.doi.org/10.1080/24749508.2019.1585657.
[38]. Adeli, Z., Rassa, I., and Darvishzadeh, A., 2008. Application of matched filtering technique to target alteration minerals. 29th Asian Conference on Remote Sensing (ACRS), Seri Lanka.