[1]. Pickett, G.R. (1963). Acoustic character logs and their applications in formation evaluation. Journal of Petroleum technology. 15 (06): 659-667.
[2]. Carroll, R.D. (1969). The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 6 (6): 557-579.
[3]. Tosaya, C., and Nur, A. (1982). Effects of diagenesis and clays on compressional velocities in rocks. Geophysical Research Letters. 9 (1): 5-8.
[4]. Domenico, S.N. (1984). Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics. 49 (8): 1188-1195.
[5]. Castagna, J.P., Batzle, M.L., and Eastwood, R.L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. geophysics,. 50 (4): 571-581.
[6]. Han, D.H., Nur, A., and Morgan, D. (1986). Effects of porosity and clay content on wave velocities in sandstones. Geophysics. 51 (11): 2093-2107.
[7]. Eissa, E.A., and Kazi, A. (1988). Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining & Geomechanics Abstracts. 25 (6): 479-482.
[8]. Boonen, P., Bean, C., Tepper, R., and Deady, R. (1998, May). Important Implications From A Comparison Of Lwd And Wireline Acoustic Data From A Gulf Of Mexico Well. In SPWLA 39th Annual Logging Symposium. OnePetro, 1-14.
[9]. Krief, M., Garat, J., Stellingwerff, J., and Ventre, J. (1990). A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 31(06).
[10]. Anselmetti, F.S., and Eberli, G. P. (1993). Controls on sonic velocity in carbonates. Pure and Applied geophysics. 141 (2): 287-323.
[11]. Yasar, E., and Erdogan, Y. (2004). Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences. 41 (5): 871-875.
[12]. Brocher, T.M. (2005). Empirical relations between elastic wave speeds and density in the Earth's crust. Bulletin of the seismological Society of America. 95 (6): 2081-2092.
[13]. Ameen, M.S., Smart, B.G., Somerville, J.M., Hammilton, S., and Naji, N.A. (2009). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology. 26 (4): 430-444.
[14]. Wadhwa, R.S., Ghosh, N., and Subba-Rao, C. (2010). Empirical relation for estimating shear wave velocity from compressional wave velocity of rocks. Journal of Indian Geophysical Union. 14 (1): 21-30.
[15]. Rasouli, V., Pallikathekathil, Z.J., and Mawuli, E. (2011). The influence of perturbed stresses near faults on drilling strategy: a case study in Blacktip field, North Australia. Journal of Petroleum Science and Engineering, 76(1-2), 37-50.
[16]. Zhang, W., Ma, Q., Wang, R., and Ren, S. (2011). An experimental study of shear strength of gas-hydrate-bearing core samples. Petroleum Science. 8 (2): 177-182.
[17]. Maleki, S.h., Moradzadeh, A., Riabi, R.G., Gholami, R., and Sadeghzadeh, F. (2014). Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG Journal of Astronomy and Geophysics. 3 (1): 70-81.
[18]. Bagheripour, P., Gholami, A., Asoodeh, M., and Vaezzadeh-Asadi, M. (2015). Support vector regression based determination of shear wave velocity. Journal of Petroleum Science and Engineering, 125, 95-99.
[19]. Behnia, D., Ahangari, K., and Moeinossadat, S.R. (2017). Modeling of shear wave velocity in limestone by soft computing methods. International Journal of Mining Science and Technology. 27 (3): 423-430.
[20]. Rezaee, M.R., Ilkhchi, A.K., and Barabadi, A. (2007). Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. Journal of Petroleum Science and Engineering. 55 (3-4): 201-212.
[21]. Rajabi, M., Bohloli, B., and Ahangar, E.G. (2010). Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran). Computers & Geosciences. 36 (5): 647-664.
[22]. Ghorbani, A., Jafarian, Y., and Maghsoudi, M.S. (2012). Estimating shear wave velocity of soil deposits using polynomial neural networks: Application to liquefaction. Computers & Geosciences, 44, 86-94.
[23]. Nourafkan A. and Kadkhodaie-Ilkhchi A. (2015). Shear wave velocity estimation from conventional well log data by using a hybrid ant colony–fuzzy inference system: A case study from Cheshmeh–Khosh oilfield. Journal of Petroleum Science and Engineering. 127: 459-468.
[24]. Anemangely, M., Ramezanzadeh, A., and Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering, 38, 373-387.
[25]. Tercan, A.E., and Özçelik, Y. (2000). Geostatistical evaluation of dimension-stone quarries. Engineering Geology. 58 (1): 25-33.
[26]. Marinoni, O. (2003). Improving geological models using a combined ordinary–indicator kriging approach. Engineering geology. 69 (1-2): 37-45.
[28]. Deng, M. G., Li, W. C., Bo, L.I., Li, L. H., Jiang, S.D., Xiong, G.X., and Yu, H.J. (2007). Application of Log Kriging on estimated reserves of the 10-9 ore body of Lutangba in the Gejiu Tin deposits. Journal of China University of Mining and Technology. 17 (2): 286-289.
[29].
Daya A.A. (2012). Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method. International Journal of Mining Science and Technology. 22 (4): 573-577.
[30]. Mohammadi, S.S., Hezarkhani, A. and Tercan, A. E. (2012). Optimally locating additional drill holes in three dimensions using grade and simulated annealing. Journal of the Geological Society of India. 80 (5): 700-706.
[31]. Doostmohammadi, M., Jafari, A., and Asghari, O. (2015). Geostatistical modeling of uniaxial compressive strength along the axis of the Behesht-Abad tunnel in Central Iran. Bulletin of Engineering Geology and the Environment. 74 (3): 789-802.
[32]. Nazari-Ostad M., Asghari O., Emery X., Azizzadeh M. and Khoshbakht F. (2016). Fracture network modeling using petrophysical data, an approach based on geostatistical concepts. Journal of Natural Gas Science and Engineering, 31, 758-768.
[33]. Rahimi, H., Asghari, O., and Hajizadeh, F. (2018). Selection of optimal thresholds for estimation and simulation based on indicator values of highly skewed distributions of ore data. Natural Resources Research. 27 (4): 437-453.
[34]. Nezhad, Y.A., Moradzadeh, A., and Kamali, M.R. (2018). A new approach to evaluate Organic Geochemistry Parameters by geostatistical methods: A case study from western Australia. Journal of Petroleum Science and Engineering, 169, 813-824.
[35]. Waller, L.A., and Gotway, C.A. (2004). Applied spatial statistics for public health data (Vol. 368). John Wiley & Sons.
[36]. Webster, R., and Oliver, M.A. (2007). Geostatistics for environmental scientists. John Wiley & Sons.
[37]. Armstrong, M. (1998). Basic linear geostatistics. Springer Science & Business Media.
[38]. Shahbeik, S., Afzal, P., Moarefvand, P., and Qumarsy, M. (2014). Comparison between ordinary kriging (OK) and inverse distance weighted (IDW) based on estimation error. Case study: Dardevey iron ore deposit, NE Iran. Arabian Journal of Geosciences 7 (9): 3693-3704.
[39]. Afzal, P. (2018). Comparing ordinary kriging and advanced inverse distance squared methods based on estimating coal deposits; case study: East-Parvadeh deposit, central Iran. Journal of Mining and Environment. 9 (3): 753-760.
[40]. James, G. A., and Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG bulletin. 49 (12): 2182-2245.
[41] Sadooni, F.N. (1993). Stratigraphie Sequence, Microfacies, and Petroleum Prospects of the Yamama Formation, Lower Cretaceous, Southern Iraq. AAPG bulletin. 77 (11): 1971-1988.
[42]. Narendra K.S. and Parthasarathy K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on neural networks. 1 (1): 4-27.
[43]. Haykin, S. (1994). Neural networks: A comprehensive foundation, prentice hall ptr. Upper Saddle River, NJ, USA.
[44]. Deutsch, C.V., and Hewett, T.A. (1996). Challenges in reservoir forecasting. Mathematical geology. 28 (7): 829-842.
[45]. Hohn, M. (1998). Geostatistics and petroleum geology. Springer Science & Business Media.
[46]. Pyrcz, M.J., and Deutsch, C.V. (2014). Geostatistical reservoir modeling. Oxford university press.
[47]. Mostafaei, K., and Ramazi, H.R. (2018). 3D model construction of induced polarization and resistivity data with quantifying uncertainties using geostatistical methods and drilling (Case study: Madan Bozorg, Iran). Journal of Mining and Environment. 9 (4): 857-872.
[48]. Gotawala, D.R., and Gates, I.D. (2010). On the impact of permeability heterogeneity on SAGD steam chamber growth. Natural Resources Research. 19 (2): 151-164.
[49]. Zawadzki, J., and Fabijańczyk, P. (2007). Use of variograms for field magnetometry analysis in Upper Silesia Industrial Region. Studia Geophysica et Geodaetica. 51 (4): 535-550.
[50]. Rossi, M.E., and Deutsch, C.V. (2014). Mineral resource estimation. Dordrecht: Springer Science & Business Media.
[51]. Deutsch, C.V., and Journel, A.G. (1992). Geostatistical software library and user’s guide. New York. 119 (147).