[1]. Karakul, H. (2021). Investigation of fracture properties of rocks under drilling fluid saturation. Environmental Earth Sciences. 80 (15): 1-16.
[2]. Abdolghanizadeh, K., Hosseini, M., & Saghafiyazdi, M. (2019). Effects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar. Journal of Mining and Environment. 10 (4): 967-978.
[3]. Marji, M.F. (2014). Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method. International Journal of Solids and Structures. 51 (9): 1716-1736.
[4]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. Journal of Mining and Environment. 2 (1).
[5]. Hosseini, M. and Khodayari, A.R. (2018). Effects of temperature and confining pressure on mode II fracture toughness of rocks (Case study: Lushan Sandstone). Journal of Mining and Environment. 9 (2): 379-391.
[6]. Yao, W., & Xia, K. (2019). Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1066-1093.
[7]. Wang, W., Zhao, Y., Teng, T., Zhang, C. and Jiao, Z. (2021). Influence of Bedding Planes on Mode I and Mixed-Mode (I–II) Dynamic Fracture Toughness of Coal: Analysis of Experiments. Rock Mechanics and Rock Engineering. 54 (1): 173-189.
[8]. Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013). Mixed mode crack propagation in low brittle rock-like materials. Arabian Journal of Geosciences. 6 (11): 4435-4444.
[9]. Majdi, A. and Yazdani, M. (2021). Determination of Hydraulic Jacking Mechanism and Maximum Allowable Grout Pressure during Grout Injection in Anisotropic Rocks. Journal of Mining and Environment. 12 (2): 589-603.
[10]. Zhixi, C., Mian, C., Yan, J. and Rongzun, H. (1997). Determination of rock fracture toughness and its relationship with acoustic velocity. International Journal of Rock Mechanics and Mining Sciences. 34 (3-4): 49-e1.
[11]. Chang, S.H., Lee, C.I. and Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering geology. 66 (1-2): 79-97.
[12]. Zeinedini, A., Moradi, M.H., Taghibeigi, H. and Jamali, J. (2020). On the mixed mode I/II/III translaminar fracture toughness of cotton/epoxy laminated composites. Theoretical and Applied Fracture Mechanics. 109: 102760.
[13]. Areias, P., Reinoso, J., Camanho, P.P., De Sá, J.C. and Rabczuk, T. (2018). Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 189, 339-360.
[14]. Aengchuan, P. and Phruksaphanrat, B. (2018). Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Journal of Intelligent Manufacturing. 29 (4): 905-923.
[15]. Balcıoğlu, H.E. and Seçkin, A.Ç. (2021). Comparison of machine learning methods and finite element analysis on the fracture behavior of polymer composites. Archive of Applied Mechanics. 91 (1): 223-239.
[16]. Abdallah, A. (2019). Prediction of the Soil Water Retention Curve from Basic Geotechnical Parameters by Machine Learning Techniques. In International Conference on Inforatmion technology in Geo-Engineering (pp. 383-392). Springer, Cham.
[17]. Goswami, S., Anitescu, C. and Rabczuk, T. (2020). Adaptive fourth-order phase field analysis using deep energy minimization. Theoretical and Applied Fracture Mechanics. 107: 102527.
[18]. Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020). Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics, 106, 102447.
[19]. Wiangkham, A., Ariyarit, A. and Aengchuan, P. (2021). Prediction of the mixed mode I/II fracture toughness of PMMA by an artificial intelligence approach. Theoretical and Applied Fracture Mechanics. 112: 102910.
[20]. Wang, Y.T., Zhang, X. and Liu, X.S. (2021). Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination. Engineering Fracture Mechanics, 253, 107890.
[21]. Roy, D.G., Singh, T.N. and Kodikara, J. (2018). Predicting mode-I fracture toughness of rocks using soft computing and multiple regression. Measurement. 126, 231-241.
[22]. Fang, K. and Fall, M. (2020). Insight into the mode I and mode II fracture toughness of the cemented backfill-rock interface: Effect of time, temperature and sulphate. Construction and Building Materials. 262: 120860.
[23]. Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Ibrahim, H.H., Khishe, M., Rashidi, S. and Ali, H.F.H. (2022). Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms. Engineering Fracture Mechanics, 264, 108334.
[24]. Barton, N. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering. 5(4): 249-261.
[25]. Martin, C.D. (1997). Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal. 34(5): 698-725.
[26]. Irwin, G.R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
[27]. Jin, Y., Yuan, J., Chen, M., Chen, K. P., Lu, Y. and Wang, H. (2011). Determination of rock fracture toughness K IIC and its relationship with tensile strength. Rock mechanics and rock engineering. 44 (5): 621-627.
[28]. Sun, W., Du, H., Zhou, F. and Shao, J. (2019). Experimental study of crack propagation of rock-like specimens containing conjugate fractures. Geomechanics and Engineering. 17 (4): 323-331.
[29]. Aliha, M.R.M. and Ayatollahi, M.R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
[30]. Whittaker, B.N., Singh, R.N. and Sun, G. (1992). Rock fracture mechanics. Principles, design and applications.
[31]. Singh, R.N. and Sun, G.X. (1989). The relationship between fracture toughness hardness indices and mechanical properties of rocks. Nottingham University Mining Department Magazine;(UK), 41.
[32]. Al-Shayea, N.A., Khan, K. and Abduljauwad, S.N. (2000). Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. International Journal of Rock Mechanics and Mining Sciences. 37 (4): 629-643.
[33]. Rao, Q., Sun, Z., Stephansson, O., Li, C. and Stillborg, B. (2003). Shear fracture (Mode II) of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 40 (3): 355-375.
[34]. Backers, T. (2005). Fracture toughness determination and micromechanics of rock under mode I and mode II loading (Doctoral dissertation, GeoForschungsZentrum Potsdam).
[35]. Andersson, J.C. (2007). Rock mass response to coupled mechanical thermal loading: Äspö Pillar Stability Experiment, Sweden (Doctoral dissertation, Byggvetenskap).
[36]. Shen, B., Stephansson, O., Rinne, M., Amemiya, K., Yamashi, R., Toguri, S. and Asano, H. (2011). FRACOD modeling of rock fracturing and permeability change in excavation-damaged zones. International Journal of Geomechanics. 11 (4): 302-313.
[37]. Rinne, M. (2008). Fracture mechanics and subcritical crack growth approach to model time-dependent failure in brittle rock. Teknillinen korkeakoulu.
[38]. Siren, T. (2011). Fracture mechanics prediction for Posiva's Olkiluoto spalling experiment (POSE) (No. POSIVA-WR--11-23). Posiva Oy.
[39]. Montgomery, D.C. and Runger, G.C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.
[40]. Fathi, M., Alimoradi, A. and Hemati Ahooi, H.R. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade. Journal of Mining and Environment. 12 (2): 397-411.
[41]. Algaifi, H. A., Bakar, S.A., Alyousef, R., Sam, A.R.M., Alqarni, A.S., Ibrahim, M.H. and Salami, B.A. (2021). Machine learning and RSM models for prediction of compressive strength of smart bio-concrete. Smart Structures and Systems. 28 (4): 535-551.
[42]. Alimoradi, A., Moradzadeh, A. and Bakhtiari, M.R. (2013). Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data. Journal of Mining and Environment. 4 (1): 1-14.
[43]. Kang, F. and Li, J. (2016). Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. Journal of Computing in Civil Engineering. 30 (3): 04015040.
[44]. Zhou, X., Zhang, G., Hu, S. and Li, J. (2019). Optimal estimation of shear strength parameters based on copula theory coupling information diffusion technique. Advances in Civil Engineering, 2019.