Document Type : Original Research Paper


1 Department of Geology, Yazd University, Yazd, Iran.

2 Mining and Metallurgical engineering department of Yazd University, Yazd, Iran.

3 Department of Petroleum Engineering, University of North Dakota, North Dakota, USA.


In this work, the machine learning prediction models are used in order to evaluate the influence of rock macro-parameters (uniaxial compressive strength, tensile strength, and deformation modulus) on the rock fracture toughness related to the micro-parameters of rock. Four different types of machine learning methods, i.e. Multivariate Linear Regression (MLR), Multivariate Non-Linear Regression (MNLR), copula method, and Support Vector Regression (SVR) are used in this work. The fracture toughness of mode I and mode II (KIC and KIIC) is selected as the dependent variable, whereas the tensile strength, compressive strength, and elastic modulus are considered as the independent variables, respectively. The data is collected from the literature. The results obtained show that the SVR model predicts the values of KIC and KIIC with the determination coefficients (R2) of 0.73 and 0.77. The corresponding determination coefficient values of the MLR model and the MNLR model for KI and KII are R2 = 0.63, R2 = 0.72, and R2 = 0.62,0.75, respectively. The copula model predicts that the value of R2 for KI is 0.52, and for KII R2=0.69. K-fold cross-validation testing method performs for all these machine learning models. The cross-validation technique shows that SVR is the best-designed model for predicting the fracture toughness mode-I and mode-II.


[1]. Karakul, H. (2021). Investigation of fracture properties of rocks under drilling fluid saturation. Environmental Earth Sciences. 80 (15): 1-16.
[2]. Abdolghanizadeh, K., Hosseini, M., & Saghafiyazdi, M. (2019). Effects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar. Journal of Mining and Environment. 10 (4): 967-978.
[3]. Marji, M.F. (2014). Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method. International Journal of Solids and Structures. 51 (9): 1716-1736.
[4]. Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2012). On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method. Journal of Mining and Environment. 2 (1).
[5]. Hosseini, M. and Khodayari, A.R. (2018). Effects of temperature and confining pressure on mode II fracture toughness of rocks (Case study: Lushan Sandstone). Journal of Mining and Environment. 9 (2): 379-391.
[6]. Yao, W., & Xia, K. (2019). Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 1066-1093.
[7]. Wang, W., Zhao, Y., Teng, T., Zhang, C. and Jiao, Z. (2021). Influence of Bedding Planes on Mode I and Mixed-Mode (I–II) Dynamic Fracture Toughness of Coal: Analysis of Experiments. Rock Mechanics and Rock Engineering. 54 (1): 173-189.
[8]. Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013). Mixed mode crack propagation in low brittle rock-like materials. Arabian Journal of Geosciences. 6 (11): 4435-4444.
[9]. Majdi, A. and Yazdani, M. (2021). Determination of Hydraulic Jacking Mechanism and Maximum Allowable Grout Pressure during Grout Injection in Anisotropic Rocks. Journal of Mining and Environment. 12 (2): 589-603.
[10]. Zhixi, C., Mian, C., Yan, J. and Rongzun, H. (1997). Determination of rock fracture toughness and its relationship with acoustic velocity. International Journal of Rock Mechanics and Mining Sciences. 34 (3-4): 49-e1.
[11]. Chang, S.H., Lee, C.I. and Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering geology. 66 (1-2): 79-97.
[12]. Zeinedini, A., Moradi, M.H., Taghibeigi, H. and Jamali, J. (2020). On the mixed mode I/II/III translaminar fracture toughness of cotton/epoxy laminated composites. Theoretical and Applied Fracture Mechanics. 109: 102760.
[13]. Areias, P., Reinoso, J., Camanho, P.P., De Sá, J.C. and Rabczuk, T. (2018). Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 189, 339-360.
[14]. Aengchuan, P. and Phruksaphanrat, B. (2018). Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Journal of Intelligent Manufacturing. 29 (4): 905-923.
[15]. Balcıoğlu, H.E. and Seçkin, A.Ç. (2021). Comparison of machine learning methods and finite element analysis on the fracture behavior of polymer composites. Archive of Applied Mechanics. 91 (1): 223-239.
[16]. Abdallah, A. (2019). Prediction of the Soil Water Retention Curve from Basic Geotechnical Parameters by Machine Learning Techniques. In International Conference on Inforatmion technology in Geo-Engineering (pp. 383-392). Springer, Cham.
[17]. Goswami, S., Anitescu, C. and Rabczuk, T. (2020). Adaptive fourth-order phase field analysis using deep energy minimization. Theoretical and Applied Fracture Mechanics. 107: 102527.
[18]. Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020). Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics, 106, 102447.
[19]. Wiangkham, A., Ariyarit, A. and Aengchuan, P. (2021). Prediction of the mixed mode I/II fracture toughness of PMMA by an artificial intelligence approach. Theoretical and Applied Fracture Mechanics. 112: 102910.
[20]. Wang, Y.T., Zhang, X. and Liu, X.S. (2021). Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination. Engineering Fracture Mechanics, 253, 107890.
[21]. Roy, D.G., Singh, T.N. and Kodikara, J. (2018). Predicting mode-I fracture toughness of rocks using soft computing and multiple regression. Measurement. 126, 231-241.
[22]. Fang, K. and Fall, M. (2020). Insight into the mode I and mode II fracture toughness of the cemented backfill-rock interface: Effect of time, temperature and sulphate. Construction and Building Materials. 262: 120860.
[23]. Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Ibrahim, H.H., Khishe, M., Rashidi, S. and Ali, H.F.H. (2022). Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms. Engineering Fracture Mechanics, 264, 108334.
[24]. Barton, N. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering. 5(4): 249-261.
[25]. Martin, C.D. (1997). Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal. 34(5): 698-725.
[26]. Irwin, G.R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
[27]. Jin, Y., Yuan, J., Chen, M., Chen, K. P., Lu, Y. and Wang, H. (2011). Determination of rock fracture toughness K IIC and its relationship with tensile strength. Rock mechanics and rock engineering. 44 (5): 621-627.
[28]. Sun, W., Du, H., Zhou, F. and Shao, J. (2019). Experimental study of crack propagation of rock-like specimens containing conjugate fractures. Geomechanics and Engineering. 17 (4): 323-331.
[29]. Aliha, M.R.M. and Ayatollahi, M.R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
[30]. Whittaker, B.N., Singh, R.N. and Sun, G. (1992). Rock fracture mechanics. Principles, design and applications.
[31]. Singh, R.N. and Sun, G.X. (1989). The relationship between fracture toughness hardness indices and mechanical properties of rocks. Nottingham University Mining Department Magazine;(UK), 41.
[32]. Al-Shayea, N.A., Khan, K. and Abduljauwad, S.N. (2000). Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. International Journal of Rock Mechanics and Mining Sciences. 37 (4): 629-643.
[33]. Rao, Q., Sun, Z., Stephansson, O., Li, C. and Stillborg, B. (2003). Shear fracture (Mode II) of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 40 (3): 355-375.
[34]. Backers, T. (2005). Fracture toughness determination and micromechanics of rock under mode I and mode II loading (Doctoral dissertation, GeoForschungsZentrum Potsdam).
[35]. Andersson, J.C. (2007). Rock mass response to coupled mechanical thermal loading: Äspö Pillar Stability Experiment, Sweden (Doctoral dissertation, Byggvetenskap).
[36]. Shen, B., Stephansson, O., Rinne, M., Amemiya, K., Yamashi, R., Toguri, S. and Asano, H. (2011). FRACOD modeling of rock fracturing and permeability change in excavation-damaged zones. International Journal of Geomechanics. 11 (4): 302-313.
[37]. Rinne, M. (2008). Fracture mechanics and subcritical crack growth approach to model time-dependent failure in brittle rock. Teknillinen korkeakoulu.
[38]. Siren, T. (2011). Fracture mechanics prediction for Posiva's Olkiluoto spalling experiment (POSE) (No. POSIVA-WR--11-23). Posiva Oy.
[39]. Montgomery, D.C. and Runger, G.C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.
[40]. Fathi, M., Alimoradi, A. and Hemati Ahooi, H.R. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade. Journal of Mining and Environment. 12 (2): 397-411.
[41]. Algaifi, H. A., Bakar, S.A., Alyousef, R., Sam, A.R.M., Alqarni, A.S., Ibrahim, M.H. and Salami, B.A. (2021). Machine learning and RSM models for prediction of compressive strength of smart bio-concrete. Smart Structures and Systems. 28 (4): 535-551.
[42]. Alimoradi, A., Moradzadeh, A. and Bakhtiari, M.R. (2013). Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data. Journal of Mining and Environment. 4 (1): 1-14.
[43]. Kang, F. and Li, J. (2016). Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. Journal of Computing in Civil Engineering. 30 (3): 04015040.
[44]. Zhou, X., Zhang, G., Hu, S. and Li, J. (2019). Optimal estimation of shear strength parameters based on copula theory coupling information diffusion technique. Advances in Civil Engineering, 2019.