[1]. Balha, A., Mallick, J., Pandey, S., Gupta, S., and Singh, C.K. (2021). A comparative analysis of different pixel and object-based classification algorithms using multi-source high spatial resolution satellite data for LULC mapping. Earth Science Informatics, 14 (4): 2231-2247.
[2]. Battiti, R. (1992). First-and second-order methods for learning: between steepest descent and Newton's method. Neural computation, 4 (2): 141-166.
[3]. Bottou, L. (2003). Stochastic learning. In Summer School on Machine Learning (pp. 146-168). Springer, Berlin, Heidelberg.
[4]. Castelluccio, M., Poggi, G., Sansone, C., and Verdoliva, L. (2015). Land use classification in remote sensing images by convolutional neural networks. arXiv preprint arXiv:1508.00092.
[5]. Gill, P.E., Murray, W., and Wright, M.H. (2019). Practical optimization. Society for Industrial and Applied Mathematics.
[6]. Hagan, M.T., and Menhaj, M.B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks, 5(6): 989-993.
[7]. Hay, G. J., and Castilla, G. (2008). Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object-based image analysis (pp. 75-89). Springer, Berlin, Heidelberg.
[8]. Jin, C., Netrapalli, P., and Jordan, M.I. (2018). Accelerated gradient descent escapes saddle points faster than gradient descent. In Conference On Learning Theory (pp. 1042-1085). PMLR.
[9]. Johnson, R.A., and Wichern, D.W. (2020). Applied multivariate statistical analysis.
[10]. Kumar, A., and Gorai, A.K. (2022). Application of transfer learning of deep CNN model for classification of time-series satellite images to assess the long-term impacts of coal mining activities on land-use patterns. Geocarto International, 1-21.
[11]. Laban, N., Abdellatif, B., Ebied, H. M., Shedeed, H.A., and Tolba, M.F. (2017). Performance enhancement of satellite image classification using a convolutional neural network. In International Conference on Advanced Intelligent Systems and Informatics (pp. 673-682). Springer, Cham.
[12]. Labat, C., and Idier, J. (2006). Preconditioned conjugate gradient without linesearch: a comparison with the half-quadratic approach for edge-preserving image restoration. In Computational Imaging IV (Vol. 6065, pp. 134-143). SPIE.
[13]. Lee, H., and Kwon, H. (2016). Contextual deep CNN based hyperspectral classification. In 2016 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 3322-3325). IEEE.
[14]. Lemaréchal, C. (2012). Cauchy and the gradient method. Doc Math Extra, 251(254). 10.
[15]. MacKay, D.J. (1992). Bayesian interpolation. Neural computation, 4(3): 415-447.
[16]. Møller, M.F. (1990). A scaled conjugate gradient algorithm for fast supervised learning. Aarhus University. Computer Science Department, 339.
[17]. Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., and Zanchetta, L. (2013). A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5): 2102-2131.
[18]. Powell, M.J.D. (1977). Restart procedures for the conjugate gradient method. Mathematical programming, 12(1): 241-254.
[19]. Qu, L. A., Chen, Z., Li, M., Zhi, J., and Wang, H. (2021). Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google Earth engine. Remote Sensing, 13(3): 453.
[20]. Riedmiller, M., and Braun, H. (1993). A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In IEEE international conference on neural networks (pp. 586-591).
[21]. Simon, C., and De Vleeschouwer, C. (2021). Intraclass clustering: an implicit learning ability that regularizes DNNs. arXiv preprint arXiv:2103.06733.
[22]. Trujillo-Jiménez, M.A., Liberoff, A.L., Pessacg, N., Pacheco, C., Díaz, L., and Flaherty, S. (2022). SatRed: New classification land use/land cover model based on multi-spectral satellite images and neural networks applied to a semiarid valley of Patagonia. Remote Sensing Applications: Society and Environment, 26, 100703.
[23]. Verma, D., and Jana, A. (2019). LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: Evidence from Mumbai. arXiv preprint arXiv:1909.09774.
[24]. Xia, G. S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., and Lu, X. (2017). AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981.
[25]. Xia, G.S., Yang, W., Delon, J., Gousseau, Y., Sun, H., and Maître, H. (2010). Structural high-resolution satellite image indexing. In ISPRS TC VII Symposium-100 Years ISPRS,Vol. 38, pp. 298-303.
[26]. Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., and Atkinson, P.M. (2018). An object-based convolutional neural network (OCNN) for urban land use classification. Remote sensing of environment, 216, 57-70.