[1]. Peltoniemi, M. (1998). Depth of penetration of frequency-domain airborne electromagnetics in resistive terrains. Exploration Geophysics. 29 (2): 12-15.
[2]. Tan, K., Munday, T., Halas, L., and Cahill, K. (2009). Utilizing airborne electromagnetic data to map groundwater salinity and salt store at Chowilla, SA. ASEG Extended Abstracts. 2009 (1): 1-6.
[3]. Siemon, B., Steuer, A., Ullmann, A., Vasterling, M., and Voß, W. (2011). Application of frequency-domain helicopter-borne electromagnetics for groundwater exploration in urban areas. Physics and Chemistry of the Earth, Parts A/B/C. 36 (16): 1373-1385.
[4]. Baranwal, V. C., Brönner, M., Rønning, J. S., Elvebakk, H., and Dalsegg, E. (2020). 3D interpretation of helicopter-borne frequency-domain electromagnetic (HEM) data from Ramså Basin and adjacent areas at Andøya, Norway. Earth, Planets and Space. 72 (1): 1-14.
[5]. Huang, H. and Fraser, D.C. (1996). The differential parameter method for multi-frequency airborne resistivity mapping. Geophysics 61 (1): 100–109.
[6]. Farquharson, C.G., Oldenburg, D.W., and Routh, P.S. (2003). Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity. Geophysics. 68 (6): 1857-1869.
[7]. Yin, C. and Hodges, G. (2007). Simulated annealing for airborne EM inversion. Geophysics 72
(4): F189–F195.
[8]. Arab-Amiri, A.R., Moradzadeh, A., Fathianpour, N., and Siemon, B. (2011). Inverse modeling of
HEM data using a new inversion algorithm. JME. 1 (2): 9–20.
[9]. Siemon, B. (2012). Accurate 1D forward and inverse modeling of high-frequency
helicopter-borne electromagnetic data. Geophysics .77 (4): WB71–WB87.
[10]. Lin, C., Fiandaca, G., Auken, E., Couto, M. A., and Christiansen, A.V. (2019). A discussion of 2D induced polarization effects in airborne electromagnetic and inversion with a robust 1D laterally constrained inversion scheme. Geophysics. 84 (2): E75-E88.
[11]. Sharifi, F., Arab-Amiri, A.R., Kamkar-Rouhani, A., and Börner, R.U. (2019). One-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy. International Journal of Mining and Geo-Engineering. 53 (2): 143-150.
[12]. Sharifi, F., Arab-Amiri, A.R., Kamkar-Rouhani, A., and Börner, R.U. (2020). Development of a novel approach for recovering SIP effects from 1-D inversion of HEM data: Case study from the Alut area, northwest of Iran. Journal of Applied Geophysics, 174, 103962.
[13]. Mitsuhata, Y. (2000). 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics. 65 (2): 465-475.
[14]. Mitsuhata, Y., Uchida, T., and Amano, H. (2002). 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source. Geophysics. 67 (6): 1753-1768.
[15]. Abubakar, A., Habashy, T.M., Druskin, V.L., Knizhnerman, L., and Alumbaugh, D. (2008). 2.5 D forward and inverse modeling for interpreting low-frequency electromagnetic measurements. Geophysics. 73 (4): F165-F177.
[16]. Ramananjaona, C. and MacGregor, L. (2010, November). 2.5 D inversion of CSEM data in a vertically anisotropic earth. In Journal of Physics: Conference Series (Vol. 255, No. 1, p. 012004). IOP Publishing.
[17]. Key, K. and Ovall, J. (2011). A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophysical Journal International. 186 (1): 137-154.
[18]. Streich, R., Becken, M., and Ritter, O. (2011). 2.5 D controlled-source EM modeling with general 3D source geometries. Geophysics. 76 (6): F387-F393.
[19]. Li, W.B., Zeng, Z.F., Li, J., Chen, X., Wang, K., and Xia, Z. (2016). 2.5 D forward modeling and inversion of frequency-domain airborne electromagnetic data. Applied Geophysics. 13 (1): 37-47.
[20]. Boesen, T., Auken, E., Christiansen, A. V., Fiandaca, G., Kirkegaard, C., Aspmo Pfaffhuber, A., and Vöge, M. (2018). An efficient 2D inversion scheme for airborne frequency-domain data. Geophysics, 83(4): E189-E201.
[21]. Cheng, J., Xue, J., Zhou, J., Dong, Y., and Wen, L. (2019). 2.5-D inversion of advanced detection transient electromagnetic method in full space. IEEE Access, 8, 4972-4979.
[22]. Ghari, H.A., Voge, M., Bastani, M., Pfaffhuber, A.A., and Oskooi, B. (2020). Comparing resistivity models from 2D and 1D inversion of frequency domain HEM data over rough terrains: cases study from Iran and Norway. Exploration Geophysics. 51 (1): 45-65.
[23]. Idesman, A. and Dey, B. (2020). A new numerical approach to the solution of the 2-D Helmholtz equation with optimal accuracy on irregular domains and Cartesian meshes. Computational Mechanics. 65 (4): 1189-1204.
[24]. Li, G., Duan, S., Cai, H., Han, B., and Ye, Y. (2020). Improved interpolation scheme at receiver positions for 2.5 D frequency-domain marine CSEM forward modelling. In EGU General Assembly Conference Abstracts (p. 20994).
[25]. Avdeev, D.B. (2005). Three-dimensional electromagnetic modelling and inversion from theory to application: Surveys in Geophysics, 26, 767–799, doi: 10.1007/s10712-005-1836-x.
[26]. Zhdanov, M.S. (2009). Geophysical electromagnetic theory and methods: Elsevier.
[27]. Börner, R.U. (2010). Numerical modeling in geo-electromagnetics: Advances and challenges: Surveys in Geophysics, 31, 225–245, doi: 10.1007/s10712-009-9087-x.
[28]. Koldan, J. (2013). Numerical solution of 3-D electromagnetic problems in exploration geophysics and its implementation on massively parallel computers.
[29]. Scheunert, M. (2015). 3-D inversion of helicopter-borne electromagnetic data. PhD dissertation, TU Bergakademie Freiberg.
[30]. Dunham, M.W., Ansari, S., and Farquharson, C.G. (2018). Application of 3D marine controlled-source electromagnetic finite-element forward modeling to hydrocarbon exploration in the Flemish Pass Basin offshore Newfoundland, Canada. Geophysics. 83 (2): WB33-WB49.
[31]. Coggon, J.H. (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1): 132-155.
[32]. Xiong, Z. (1992). Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations. Geophysics. 57 (12): 1556-1561.
[33]. Newman, Gregory A., and David L. Alumbaugh (1995). “Frequency-domain Modelling of Airborne Electromagnetic Responses using Staggered Finite Differences”. In: Geophysical Prospecting 43, lO21–1O42.
[34]. Habashy, T.M., Groom, R.W., and Spies, B.R. (1993). Beyond the Born and Rytov approximations: A non-linear approach to electromagnetic scattering. Journal of Geophysical Research: Solid Earth. 98 (B2): 1759-1775.
[35].
Traynin, P., Zhdanov, M.S., Nyquist, J., Beard, L., and Doll, W. (1996). A new approach to interpretation of airborne magnetic and electromagnetic data: Proceedings of SAGEEP 96, Environmental and Engineering Geophysical Society.
[36]. Avdeev, D.B., Kuvshinov, A.V., Pankratov, O.V., and Newman, G.A. (1998). Three-dimensional frequency-domain modeling of airborne electromagnetic responses. Exploration Geophysics. 29 (1-2): 111-119.
[37]. Zhdanov, M. and Hursan, G. (2000). 3D electromagnetic inversion based on quasi-analytical approximation. Inverse Problems. 16 (5): 1297.
[38]. Pfaffhuber, A.A., Hendricks, S., and Kvistedal, Y.A. (2012). Progressing from 1D to 2D and 3D near-surface airborne electromagnetic mapping with a multisensor, airborne sea-ice explorer. Geophysics. 77 (4): WB109-WB117.
[40]. Scheunert, M., Ullmann, A., Afanasjew, M., Börner, R.U., Siemon, B., and Spitzer, K. (2016). 3D Inversion of Helicopter-borne Electromagnetic Data-A Cut-&-Paste Strategy. In 78th EAGE Conference and Exhibition 2016 (Vol. 2016, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.
[41]. Jang, H., Cho, S.O., Kim, B., Kim, H. J., and Nam, M.J. (2021). Three-dimensional finite-difference modeling of time-domain electromagnetic responses for a large-loop source. Geosciences Journal. 25 (5): 675-684.
[42]. Yin, C., Zhang, B., Liu, Y., and Cai, J. (2016). A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling. Geophysics. 81 (5): E337-E346.
[43]. Li, J., Farquharson, C. G., and Hu, X. (2017). 3D vector finite-element electromagnetic forward modeling for large loop sources using a total-field algorithm and unstructured tetrahedral grids. Geophysics. 82 (1): E1-E16.
[44]. Castillo Reyes, O. (2017). Edge-elements formulation of 3D CSEM in geophysics: a parallel approach.
[45]. Huo, Z., Zeng, Z., Li, J., Li, W., Zhang, L., and Wang, K. (2019). 3D non-linear conjugate gradient inversion for frequency-domain airborne EM based on vector finite element method. In SEG Technical Program Expanded Abstracts 2019 (pp. 2928-2932). Society of Exploration Geophysicists.
[46]. Haber, E. (2014). Computational methods in geophysical electromagnetics. Society for Industrial and Applied Mathematics.
[47]. Jahandari, H. and Farquharson, C.G. (2015). Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials. Geophysical Journal International. 202 (3): 1859-1876.
[48]. Jahandari, H., Ansari, S., and Farquharson, C.G. (2017). Comparison between staggered grid finite–volume and edge–based finite–element modelling of geophysical electromagnetic data on unstructured grids. Journal of Applied Geophysics, 138, 185-197.
[49]. Lu, X. and Farquharson, C.G. (2020). 3D finite-volume time-domain modeling of geophysical electromagnetic data on unstructured grids using potentials. Geophysics. 85 (6): E221-E240.
[50]. Jahandari, H. and Bihlo, A. (2021). Forward modelling of geophysical electromagnetic data on unstructured grids using an adaptive mimetic finite-difference method. Computational Geosciences. 25 (3): 1083-1104.
[51]. Farquharson, C.G. and Oldenburg, D. (2002). Chapter 1 An integral equation solution to the geophysical electromagnetic forward-modelling problem. Methods in geochemistry and geophysics, 35, 3-19.
[52].
Zhdanov M. S., F.A. Alfouzan, L. Cox, A. Alotaibi,, M. Alyousif, D. Sunwall, and M. Endo (2018): Large-scale 3D Modeling and Inversion of Multiphysics Airborne Geophysical Data: A Case Study from the Arabian Shield, Saudi Arabia: Minerals, 8, 271; doi:10.3390/min8070271.
[53]. Yoon, D., Zhdanov, M.S., Mattsson, J., Cai, H., and Gribenko, A. (2016). A hybrid finite-difference and integral-equation method for modeling and inversion of marine controlled-source electromagnetic data. Geophysics. 81 (5): E323-E336.
[54]. Sarakorn, W., and Vachiratienchai, C. (2018). Hybrid finite difference–finite element method to incorporate topography and bathymetry for two-dimensional magnetotelluric modeling. Earth, Planets and Space. 70 (1): 103.
[55]. Varilsuha, D. and Candansayar, M.E. (2018). 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches. Geophysics. 83 (2): WB51-WB60.
[56]. van’t Hof, B. and Vuik, M.J. (2019). Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids. Journal of Computational Science, 36, 101008.
[57]. Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation. 14 (3): 302-307.
[58]. Gilles, L., Hagness, S.C., and Vázquez, L. (2000). Comparison between staggered and unstaggered finite-difference time-domain grids for few-cycle temporal optical soliton propagation. Journal of Computational Physics. 161 (2): 379-400.
[59]. Rumpf, R.C. (2012). Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain. Progress in Electromagnetics Research, 36, 221-248.
[60]. Rumpf, R. C., Garcia, C. R., Berry, E. A., and Barton, J. H. (2014). Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects. Progress in Electromagnetics Research B, 61, 55-67.
[61]. Ward, Stanley H. and Gerald W. Hohmann (1988). “Electromagnetic Theory for Geophysical Applications”. In: Electromagnetic Methods in Applied Geophysics. Ed. by M. N. Nabighian. Vol. 1, Theory. Investigations in Geophysics 3. Society of Exploration Geophysicists, pp. 130–311.
[62]. Lowry, T., M. B. Allen, and P. N. Shive (1989). “Singularity Removal: A Refinement of Resistivity Modeling Techniques”. In: Geophysics 54, pp. 766–774.
[63] Sarkar TK. (1987) On the application of the generalized biconjugate gradient method, Journal of Electromagnetic Waves and Applications, 1, 223-242.
[64]. Smith CF, Peterson AF, and Mittra R, (1990): The biconjugate gradient method for electromagnetic scattering, IEEE Trans. Antennas Propagat., Vol. 38, pp. 938–940.
[65]. Wang, C.F. and Jin, J.M. (1998): Simple and efficient computation of electromagnetic fields in arbitrarily shaped inhomogeneous dielectric bodies using transpose-free QMR and FFT, IEEE Transactions on Microwave Theory and Techniques, vol.46, no.5, pp.553-558.
[66]. De Gersem H., Lahaye D, Vandewalle S, and Hameyer K (1999). Comparison of quasi minimal residual and bi-conjugate gradient iterative methods to solve complex symmetric systems arising from time-harmonic simulations, COMPEL, 18, 3, 298-310.
[67]. Alumbaugh, D. L., G.A. Newman, L. Prevost, and J.N. Shadid (1996). Three-dimensional wideband electromagnetic modeling on massively parallel computers, Radio Science, 31, 1-23.
[68]. Siemon, Bernhard, Anders Vest Christiansen, and Esben Auken (2009). “A Review of Helicopter-borne Electromagnetic Methods for Groundwater Exploration”. In: Near Surface Geophysics 7, pp. 629–646.