Document Type : Original Research Paper

Authors

1 Department of Geology, Yazd University, Yazd, Iran

2 Mining and Metallurgical engineering department of Yazd University, Yazd, Iran

Abstract

In this research work, X-ray diffraction (XRD) tests and petrographic studies are performed to analyze the mineral composition and lamination in the shale rock specimens. Afterward, point load (PL) and uniaxial compressive strength (UCS) tests are carried out on the anisotropic laminated shale rock. Based on the macro-mechanical properties of these tests, the discrete element method implemented in a two-dimensional particle flow code (PFC2D) is adjusted to numerically simulate the shale rock specimens. The aim of this work is to validate the numerical models by failure process, stress-strain curves, and peak failure strengths of the shale samples. Therefore, point load test is used for assessing the pattern failure mechanism, and uniaxial compressive strength test is performed for obtaining the stress-strain curves and peak strength failure points in the laboratory shale rock samples. Validation of peak strengths criteria provides the best results; the determination coefficient values for lab and numerical modeling with (R2 = 0.99). Several numerical models are prepared for estimating the mechanical behavior of shale rocks in PFC2D. The smooth joint model (SJM) is used for preparing the consistent and appropriate constitutive models for simulating the mechanical behavior of laminated shale. It is concluded that SJM provides more reasonable results for laminated shale rock that can be used for several petroleum engineering projects, especially in the central geological zone of Iran.

Keywords

[1]. Potter, P.E., Maynard, J.B., and Pryor, W.A. (2012). Sedimentology of shale: study guide and reference source. Springer Science & Business Media.
[2]. Zhang, Y., Yuan, X., Wang, M., Ge, P., Huo, Y., Xu, J., and Jiang, Z. (2021). Discovery of lacustrine shale deposits in the Yanshan Orogenic Belt, China: implications for hydrocarbon exploration. Geoscience Frontiers. 12 (6): 101256.
[3]. Kamani, M., and Ajalloeian, R. (2019). Evaluation of engineering properties of some carbonate rocks trough corrected texture coefficient. Geotechnical and Geological Engineering. 37 (2): 599-614.
[4]. Rastegarnia, A., Teshnizi, E.S., Hosseini, S., Shamsi, H., and Etemadifar, M. (2018). Estimation of punch strength index and static properties of sedimentary rocks using neural networks in south west of Iran. Measurement, 128, 464-478.
[5]. Xin, B., Zhao, X., Hao, F., Jin, F., Pu, X., Han, W., and Tian, J. (2022). Laminae characteristics of lacustrine shales from the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China: Why do laminated shales have better reservoir physical properties?. International Journal of Coal Geology, 260, 104056.
[6]. Lin, M., Xi, K., Cao, Y., Liu, Q., Zhang, Z., and Li, K. (2021). Petrographic features and diagenetic alteration in the shale strata of the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin. Journal of Petroleum Science and Engineering, 203, 108684.
[7]. Shi, Q., and Mishra, B. (2021). Discrete element modeling of delamination in laboratory scale laminated rock. Mining, Metallurgy & Exploration. 38 (1): 433-446.
[8]. Meybodi, E.E., Hussain, S.K., Torabi-Kaveh, M., and Ali, S. (2022). Role of karstic features in instability of the wall of an open-pit mine (case study: Sadat Sirize Iron Mine, Iran). Carbonates and Evaporites. 37 (3): 1-12.
[9]. Wang, Y. (2021). Finite Element Analysis for Continuum Damage Evolution and Wellbore Stability of Transversely Isotropic Rock Considering Hydro-Mechanical Coupling. In Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling (pp. 25-48). Springer, Singapore.
[10]. Sun, F., Sun, J., Zeng, X., Yuan, W., Zhang, J., Yan, W., and Yan, W. (2022). Analysis of the Influencing Factors on Electrical Properties and Evaluation of Gas Saturation in Marine Shales: A Case Study of the Wufeng-Longmaxi Formation in Sichuan Basin. Frontiers in Earth Science, 458.
[11]. Yang, Y., Jiao, Z., Du, L., and Fan, H. (2021). Numerical Simulation of Shale Reservoir Fluid-Driven Fracture Network Morphology Based on Global CZM. Frontiers in Earth Science, 9, 775446.
[12]. Weerasekara, M.M.C.M., Gunatilake, A.A.J.K., and Bandara, K.N. (2021). Effect of Geological Factors on Highway Cut Slope Instabilities: A Case Study from Beliatta on Extension of Southern Expressway. In 2021 From Innovation To Impact (FITI) (Vol. 1, pp. 1-5). IEEE.
[13]. Zhu, H., Ju, Y., Yang, M., Huang, C., Feng, H., Qiao, P., and Han, J. (2022). Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?. Energy, 239, 122176.
[14]. Yang, S.Q., Yin, P.F., and Ranjith, P.G. (2020). Experimental study on mechanical behavior and brittleness characteristics of Longmaxi Formation shale in Changning, Sichuan Basin, China. Rock Mechanics and Rock Engineering. 53 (5): 2461-2483.
[15]. Golewski, G.L. (2022). An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Construction and Building Materials, 351, 128823.
[16]. Golewski, G.L. (2022). Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theoretical and Applied Fracture Mechanics, 121, 103553.
[17]. Joint Committee on Powder Diffraction Standards. (1974). Powder Diffraction File Search Manual (Fink Method).: Inorganic (Vol. 1). Joint Committee on Powder Diffraction Standards.
[18]. Wanne, T.S., and Young, R.P. (2008). Bonded-particle modeling of thermally fractured granite. International Journal of Rock mechanics and mining Sciences. 45 (5): 789-799.
[19]. Lee, H., and Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures. 48 (6): 979-999.
[20]. Zhao, Z. (2013). Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study. Rock mechanics and rock engineering. 46 (6): 1461-1479.
[21]. Khazaei, C., Hazzard, J., and Chalaturnyk, R. (2015). Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling. Computers and Geotechnics, 67, 94-102.
[22]. Bahaaddini, M., Hagan, P.C., Mitra, R., and Khosravi, M.H. (2016). Experimental and numerical study of asperity degradation in the direct shear test. Engineering Geology, 204, 41-52.
[23]. Ozturk, H., and Altinpinar, M. (2017). The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling. Journal of African Earth Sciences, 131, 71-79.
[24]. He, J., and Afolagboye, L. O. (2018). Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions. Acta Mechanica Sinica. 34 (2): 349-358.
[25]. Yin, P.F., and Yang, S.Q. (2019). Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression. Journal of the Geological Society of India. 93 (2): 235-246.
[26]. Zhou, C., Karakus, M., Xu, C., and Shen, J. (2020). A new damage model accounting the effect of joint orientation for the jointed rock mass. Arabian Journal of Geosciences. 13 (7): 1-13.
[27]. He, B., Liu, J., Zhao, P., and Wang, J. (2021). PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks. Frontiers of Earth Science. 15 (4): 803-816.
[28]. Sarfarazi, V., Haeri, H., Bagheri, F., Zarrin Ghalam, E., and Fatehi Marji, M. (2022). PFC simulation of Brazilian tensile strength test in geomaterials’ specimens with T-shaped non-persistent joints. Journal of Mining and Environment.
[29]. Duan, K., Kwok, C.Y., and Pierce, M. (2016). Discrete element method modeling of inherently anisotropic rocks under uniaxial compression loading. International Journal for Numerical and Analytical Methods in Geomechanics. 40 (8): 1150-1183.
[30]. Li, G., Ma, F., Guo, J., and Zhao, H. (2021). Case study of roadway deformation failure mechanisms: field investigation and numerical simulation. Energies. 14 (4): 1032.
[31]. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences. 48 (2): 219-244.
[32]. Chiu, C.C., Weng, M.C., and Huang, T.H. (2016). Modeling rock joint behavior using a rough-joint model. International journal of rock mechanics and mining sciences, 89, 14-25.
[33]. Hu, W., Kwok, C.Y., Duan, K., and Wang, T. (2018). Parametric study of the smooth‐joint contact model on the mechanical behavior of jointed rock. International Journal for Numerical and Analytical Methods in Geomechanics. 42 (2): 358-376.
[34]. Chong, Z., Li, X., Hou, P., Wu, Y., Zhang, J., Chen, T., and Liang, S. (2017). Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mechanics and Rock Engineering. 50 (5): 1183-1204.
[35]. Aziznejad, S., Esmaieli, K., Hadjigeorgiou, J., and Labrie, D. (2018). Responses of jointed rock masses subjected to impact loading. Journal of Rock Mechanics and Geotechnical Engineering. 10 (4): 624-634.
[36]. Shang, J., Duan, K., Gui, Y., Handley, K., and Zhao, Z. (2018). Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths. Computers and Geotechnics, 104, 373-388.
[37]. Wang, P., Gao, N., Ji, K., Stewart, L., and Arson, C. (2020). DEM analysis on the role of aggregates on concrete strength. Computers and Geotechnics, 119, 103290.
[38]. Chong, Z., Li, X., and Hou, P. (2019). Experimental and numerical study of the effects of layer orientation on the mechanical behavior of shale. Arabian Journal for Science and Engineering. 44 (5): 4725-4743.
[39]. Huan, J.Y., He, M.M., Zhang, Z.Q., and Li, N. (2020). Parametric study of integrity on the mechanical properties of transversely isotropic rock mass using DEM. Bulletin of Engineering Geology and the Environment. 79 (4): 2005-2020.
[40]. Lei, B., Li, H., Zuo, J., Liu, H., Yu, M., and Wu, G. (2021). Meso-fracture mechanism of Longmaxi shale with different crack-depth ratios: experimental and numerical investigations. Engineering Fracture Mechanics, 257, 108025.
[41]. Lei, B., Zuo, J., Liu, H., Wang, J., Xu, F.,and Li, H. (2021). Experimental and numerical investigation on shale fracture behavior with different bedding properties. Engineering Fracture Mechanics, 247, 107639.
[42]. Haeri, H., Sarfarazi, V., Zhu, Z., Marji, M. F., and Masoumi, A. (2019). Investigation of shear behavior of soil-concrete interface. Smart Structures and Systems. 23 (1): 81-90.
[43]. Lak, M., Fatehi Marji, M., Yarahamdi Bafghi, A. R., and Abdollahipour, A. (2019). Discrete element modeling of explosion-induced fracture extension in jointed rock masses. Journal of Mining and Environment. 10 (1): 125-138.
[44]. Haeri, H., Khaloo, A., and Marji, M.F. (2015). A coupled experimental and numerical simulation of rock slope joints behavior. Arabian Journal of Geosciences. 8 (9): 7297-7308.
[45]. Emami Meybodi, E., Hussain, S.K., Fatehi Marji, M., and Rasouli, V. (2022). Application of Machine Learning Models for Predicting Rock Fracture Toughness Mode-I and Mode-II. Journal of Mining and Environment. 13 (2): 465-480.