[1]. Potter, P.E., Maynard, J.B., and Pryor, W.A. (2012). Sedimentology of shale: study guide and reference source. Springer Science & Business Media.
[2]. Zhang, Y., Yuan, X., Wang, M., Ge, P., Huo, Y., Xu, J., and Jiang, Z. (2021). Discovery of lacustrine shale deposits in the Yanshan Orogenic Belt, China: implications for hydrocarbon exploration. Geoscience Frontiers. 12 (6): 101256.
[3]. Kamani, M., and Ajalloeian, R. (2019). Evaluation of engineering properties of some carbonate rocks trough corrected texture coefficient. Geotechnical and Geological Engineering. 37 (2): 599-614.
[4]. Rastegarnia, A., Teshnizi, E.S., Hosseini, S., Shamsi, H., and Etemadifar, M. (2018). Estimation of punch strength index and static properties of sedimentary rocks using neural networks in south west of Iran. Measurement, 128, 464-478.
[5]. Xin, B., Zhao, X., Hao, F., Jin, F., Pu, X., Han, W., and Tian, J. (2022). Laminae characteristics of lacustrine shales from the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China: Why do laminated shales have better reservoir physical properties?. International Journal of Coal Geology, 260, 104056.
[6]. Lin, M., Xi, K., Cao, Y., Liu, Q., Zhang, Z., and Li, K. (2021). Petrographic features and diagenetic alteration in the shale strata of the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin. Journal of Petroleum Science and Engineering, 203, 108684.
[7]. Shi, Q., and Mishra, B. (2021). Discrete element modeling of delamination in laboratory scale laminated rock. Mining, Metallurgy & Exploration. 38 (1): 433-446.
[8]. Meybodi, E.E., Hussain, S.K., Torabi-Kaveh, M., and Ali, S. (2022). Role of karstic features in instability of the wall of an open-pit mine (case study: Sadat Sirize Iron Mine, Iran). Carbonates and Evaporites. 37 (3): 1-12.
[9]. Wang, Y. (2021). Finite Element Analysis for Continuum Damage Evolution and Wellbore Stability of Transversely Isotropic Rock Considering Hydro-Mechanical Coupling. In Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling (pp. 25-48). Springer, Singapore.
[10]. Sun, F., Sun, J., Zeng, X., Yuan, W., Zhang, J., Yan, W., and Yan, W. (2022). Analysis of the Influencing Factors on Electrical Properties and Evaluation of Gas Saturation in Marine Shales: A Case Study of the Wufeng-Longmaxi Formation in Sichuan Basin. Frontiers in Earth Science, 458.
[11]. Yang, Y., Jiao, Z., Du, L., and Fan, H. (2021). Numerical Simulation of Shale Reservoir Fluid-Driven Fracture Network Morphology Based on Global CZM. Frontiers in Earth Science, 9, 775446.
[12]. Weerasekara, M.M.C.M., Gunatilake, A.A.J.K., and Bandara, K.N. (2021). Effect of Geological Factors on Highway Cut Slope Instabilities: A Case Study from Beliatta on Extension of Southern Expressway. In 2021 From Innovation To Impact (FITI) (Vol. 1, pp. 1-5). IEEE.
[13]. Zhu, H., Ju, Y., Yang, M., Huang, C., Feng, H., Qiao, P., and Han, J. (2022). Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?. Energy, 239, 122176.
[14]. Yang, S.Q., Yin, P.F., and Ranjith, P.G. (2020). Experimental study on mechanical behavior and brittleness characteristics of Longmaxi Formation shale in Changning, Sichuan Basin, China. Rock Mechanics and Rock Engineering. 53 (5): 2461-2483.
[15]. Golewski, G.L. (2022). An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Construction and Building Materials, 351, 128823.
[16]. Golewski, G.L. (2022). Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theoretical and Applied Fracture Mechanics, 121, 103553.
[17]. Joint Committee on Powder Diffraction Standards. (1974). Powder Diffraction File Search Manual (Fink Method).: Inorganic (Vol. 1). Joint Committee on Powder Diffraction Standards.
[18]. Wanne, T.S., and Young, R.P. (2008). Bonded-particle modeling of thermally fractured granite. International Journal of Rock mechanics and mining Sciences. 45 (5): 789-799.
[19]. Lee, H., and Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures. 48 (6): 979-999.
[20]. Zhao, Z. (2013). Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study. Rock mechanics and rock engineering. 46 (6): 1461-1479.
[21]. Khazaei, C., Hazzard, J., and Chalaturnyk, R. (2015). Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling. Computers and Geotechnics, 67, 94-102.
[22]. Bahaaddini, M., Hagan, P.C., Mitra, R., and Khosravi, M.H. (2016). Experimental and numerical study of asperity degradation in the direct shear test. Engineering Geology, 204, 41-52.
[23]. Ozturk, H., and Altinpinar, M. (2017). The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling. Journal of African Earth Sciences, 131, 71-79.
[24]. He, J., and Afolagboye, L. O. (2018). Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions. Acta Mechanica Sinica. 34 (2): 349-358.
[25]. Yin, P.F., and Yang, S.Q. (2019). Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression. Journal of the Geological Society of India. 93 (2): 235-246.
[26]. Zhou, C., Karakus, M., Xu, C., and Shen, J. (2020). A new damage model accounting the effect of joint orientation for the jointed rock mass. Arabian Journal of Geosciences. 13 (7): 1-13.
[27]. He, B., Liu, J., Zhao, P., and Wang, J. (2021). PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks. Frontiers of Earth Science. 15 (4): 803-816.
[28]. Sarfarazi, V., Haeri, H., Bagheri, F., Zarrin Ghalam, E., and Fatehi Marji, M. (2022). PFC simulation of Brazilian tensile strength test in geomaterials’ specimens with T-shaped non-persistent joints. Journal of Mining and Environment.
[29]. Duan, K., Kwok, C.Y., and Pierce, M. (2016). Discrete element method modeling of inherently anisotropic rocks under uniaxial compression loading. International Journal for Numerical and Analytical Methods in Geomechanics. 40 (8): 1150-1183.
[30]. Li, G., Ma, F., Guo, J., and Zhao, H. (2021). Case study of roadway deformation failure mechanisms: field investigation and numerical simulation. Energies. 14 (4): 1032.
[31]. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences. 48 (2): 219-244.
[32]. Chiu, C.C., Weng, M.C., and Huang, T.H. (2016). Modeling rock joint behavior using a rough-joint model. International journal of rock mechanics and mining sciences, 89, 14-25.
[33]. Hu, W., Kwok, C.Y., Duan, K., and Wang, T. (2018). Parametric study of the smooth‐joint contact model on the mechanical behavior of jointed rock. International Journal for Numerical and Analytical Methods in Geomechanics. 42 (2): 358-376.
[34]. Chong, Z., Li, X., Hou, P., Wu, Y., Zhang, J., Chen, T., and Liang, S. (2017). Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mechanics and Rock Engineering. 50 (5): 1183-1204.
[35]. Aziznejad, S., Esmaieli, K., Hadjigeorgiou, J., and Labrie, D. (2018). Responses of jointed rock masses subjected to impact loading. Journal of Rock Mechanics and Geotechnical Engineering. 10 (4): 624-634.
[36]. Shang, J., Duan, K., Gui, Y., Handley, K., and Zhao, Z. (2018). Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths. Computers and Geotechnics, 104, 373-388.
[37]. Wang, P., Gao, N., Ji, K., Stewart, L., and Arson, C. (2020). DEM analysis on the role of aggregates on concrete strength. Computers and Geotechnics, 119, 103290.
[38]. Chong, Z., Li, X., and Hou, P. (2019). Experimental and numerical study of the effects of layer orientation on the mechanical behavior of shale. Arabian Journal for Science and Engineering. 44 (5): 4725-4743.
[39]. Huan, J.Y., He, M.M., Zhang, Z.Q., and Li, N. (2020). Parametric study of integrity on the mechanical properties of transversely isotropic rock mass using DEM. Bulletin of Engineering Geology and the Environment. 79 (4): 2005-2020.
[40]. Lei, B., Li, H., Zuo, J., Liu, H., Yu, M., and Wu, G. (2021). Meso-fracture mechanism of Longmaxi shale with different crack-depth ratios: experimental and numerical investigations. Engineering Fracture Mechanics, 257, 108025.
[41]. Lei, B., Zuo, J., Liu, H., Wang, J., Xu, F.,and Li, H. (2021). Experimental and numerical investigation on shale fracture behavior with different bedding properties. Engineering Fracture Mechanics, 247, 107639.
[42]. Haeri, H., Sarfarazi, V., Zhu, Z., Marji, M. F., and Masoumi, A. (2019). Investigation of shear behavior of soil-concrete interface. Smart Structures and Systems. 23 (1): 81-90.
[43]. Lak, M., Fatehi Marji, M., Yarahamdi Bafghi, A. R., and Abdollahipour, A. (2019). Discrete element modeling of explosion-induced fracture extension in jointed rock masses. Journal of Mining and Environment. 10 (1): 125-138.
[44]. Haeri, H., Khaloo, A., and Marji, M.F. (2015). A coupled experimental and numerical simulation of rock slope joints behavior. Arabian Journal of Geosciences. 8 (9): 7297-7308.
[45]. Emami Meybodi, E., Hussain, S.K., Fatehi Marji, M., and Rasouli, V. (2022). Application of Machine Learning Models for Predicting Rock Fracture Toughness Mode-I and Mode-II. Journal of Mining and Environment. 13 (2): 465-480.