[1]. Reimann, C. (2005). Geochemical mapping: technique or art? Geochemistry: Exploration, Environment, Analysis, 5 (4): 359-370.
[2]. Cheng, Q., (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews 32, 314-324.
[3]. Afzal, P., Khakzad, A., Moarefvand, P., Omran, N.R., Esfandiari, B., and Alghalandis, Y.F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104 (1-2): 34-46.
[4]. Mokhtari, A.R., Feiznia, S., Jafari, M., Tavili, A., Ghaneei-Bafghi, M.J., Rahmany, F., and Kerry, R. (2018). Investigating the role of wind in the dispersion of heavy metals around mines in arid regions (a case study from Kushk Pb–Zn Mine, Bafgh, Iran). Bulletin of environmental contamination and toxicology, 101, 124-130.
[5]. Mokhtari, A.R. and Nezhad, S.G. (2015). A modified equation for the downstream dilution of stream sediment anomalies. Journal of Geochemical Exploration, 159, 185-193.
[6]. Mokhtari, A.R., Rodsari, P.R., Fatehi, M., Shahrestani, S., and Pournik, P. (2014). Geochemical prospecting for Cu mineralization in an arid terrain-central Iran. Journal of African Earth Sciences, 100, 278-288.
[7]. Barak, S., Bahroudi, A., and Jozanikohan, G. (2018). Exploration of Kahang porphyry copper deposit using advanced integration of geological, remote sensing, geochemical, and magnetics data. Journal of Mining and Environment, 9 (1): 19-39.
[8]. Barak, S., Bahroudi, A., and Jozanikohan, G. (2018). The use of fuzzy inference system in the integration of copper exploration layers in Neysian. Journal of Mining Engineering, 13 (38): 97-112.
[9]. Yousefi, M., (2017). Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: A pixel-based mapping approach. Natural Resources Research, 26, 429-441.
[10]. Imamalipour, A. and Barak, S. (2019). Geochemistry and tectonic setting of the volcanic host rocks of VMS mineralisation in the Qezil Dash area, NW Iran: implications for prospecting of Cyprus-type VMS deposits in the Khoy ophiolite. Geological Quarterly, 63 (3).
[11]. Imamalipour, A., Barak, S., and Khalifani, F.M. (2020). Quantifying mass changes during hydrothermal alteration in listwaenite-type mercury mineralization, Tavreh area, northwestern Iran. Geochemistry: Exploration, Environment, Analysis, 20 (4): 425-439.
[12]. Seyedrahimi-Niaraq, M. and Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4): 125830.
[13]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., and Mokhtari, A.R. (2022). Integrating principal component analysis and U-statistics for mapping polluted areas in mining districts. Journal of Geochemical Exploration, 234, 106924.
[14]. Carranza, E.J.M., (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11. Elsevier, Amsterdam.
[15]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E.J.M., (2012). Geochemical mineralisation probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration 115, 24-35.
[16]. Yousefi, M., Carranza, E.J.M., and Kamkar-Rouhani, A.G., (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration 128, 88-96.
[17]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E.J.M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis 14, 45-58.
[18]. Ghasemzadeh, S., Maghsoudi, A., and Yousefi, M. (2021). Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran. Frontiers of Earth Science, 15, 106-120.
[19]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., and Mihalasky, M.J. (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geology Reviews, 113, 103115.
[20]. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., and Mihalasky, M.J. (2022). Information value-based geochemical anomaly modeling: A statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177.
[21]. Barak, S., Bahroudi, A., Aslani, S., and Mohebi, A. (2016).
The Geochemical Anomaly Separation by using the Soil Samples of Eastern of Neysian, Isfahan Province,
GEOCHEMISTRY, 5 (1): 55-71.
[22]. Salimi, A., and Rafiee, A. (2022). A grid interpolation technique for anomaly separation of stream sediments geochemical data based on catchment basin modelling, U-statistics and fractal. Earth Science Informatics, 1-11.
[23]. Yousefi, M., Kreuzer, O.P., Nykänen, V., and Hronsky, J.M.A., (2019). Exploration information systems―a proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews 111, 103005.
[24]. Yousefi, M., E.J.M., Carranza, Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., and Mihalasky, M., J., (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-Art and Outlook. Journal of Geochemical Exploration 229, 106839.
[25] Barak, S., Imamalipour, A., Abedi, M., Bahroudi, A., and Khalifani, F. M. (2021). Comprehensive modeling of mineral potential mapping by integration of multiset geosciences data. Geochemistry, 81(4): 125824.
[26]. National Iranian Copper Industries Company (NICICO). (2010), The report of geological and alteration studies in western Kahang area.
[27]. Cheng, Q., Agterberg, F.P., and Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration 51, 109–130.
[28]. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zarifi, A.Z., and Yasrebi, A. B. (2016a). Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. Journal of African Earth Sciences, 119, 139-149.
[29]. Afzal, P., Tehrani, M.E., Ghaderi, M., and Hosseini, M.R. (2016). Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran. Journal of Geochemical Exploration, 161, 119-127.
[30]. Afzal, P., Yousefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment, 10 (3): 705-715.
[31]. Bonham-Carter, G.F. (1994). Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon, Oxford.
[32]. Nykänen, V., (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.
[33]. Barak, S., Abedi, M., and Bahroudi, A. (2020). A knowledge-guided fuzzy inference approach for integrating geophysics, geochemistry, and geology data in a deposit-scale porphyry copper targeting, Saveh, Iran. Bollettino di Geofisica Teorica ed Applicata, 61 (2).
[34]. Khalifani, F., Bahroudi, A., Barak, S., and Abedi, M. (2019). An integrated Fuzzy AHP-VIKOR method for gold potential mapping in Saqez prospecting zone, Iran. Earth Observation and Geomatics Engineering, 3 (1): 21-33.
[35]. Yousefi, M. and Hronsky, J.M.A., (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry 149, 105561.