[1]. Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2019). An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: adaption of prediction–area plot and logistic functions. Natural Resources Research, 28, 1299-1316.R.
[2]. Sun, G., Zeng, Q., & Zhou, J. X. (2022). Machine learning coupled with mineral geochemistry reveals the origin of ore deposits. Ore Geology Reviews, 142, 104753.
[3]. Liu, Y., Cheng, Q., & Zhou, K. (2019). New insights into element distribution patterns in geochemistry: a perspective from fractal density. Natural Resources Research, 28, 5-29.
[4]. Jahangiri, M., Ghavami Riabi, S. R., & Tokhmechi, B. (2018). Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm. Journal of Mining and Environment, 9(2), 499-511.
[5]. Zekri, H., Cohen, D. R., Mokhtari, A. R., & Esmaeili, A. (2019). Geochemical prospectivity mapping through a feature extraction–selection classification scheme. Natural Resources Research, 28, 849-865.
[6]. Zuo, R., Kreuzer, O. P., Wang, J., Xiong, Y., Zhang, Z., & Wang, Z. (2021). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30, 3059-3079.
[7]. Vemuri, V. K. (2020). The Hundred-Page Machine Learning Book: by Andriy Burkov, Quebec City, Canada, 2019, 160 pp., 49.99(Hardcover); 29.00 (paperback); 25.43(KindleEdition),(Alternatively,canpurchaseatleanpub.comataminimumpriceof 20.00), ISBN 978-1999579517.
[8]. Nykänen, V., Groves, D. I., Ojala, V. J., & Gardoll, S. J. (2008). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 39-59.
[9]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556-572.
[10]. Cheng, Q. (2015). BoostWofE: A new sequential weights of evidence model reducing the effect of conditional dependency. Mathematical Geosciences, 47(5), 591-621.
[11]. Ghezelbash, R., Maghsoudi, A., Bigdeli, A., & Carranza, E. J. M. (2021). Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique. Natural Resources Research, 30, 1977-2005.
[12]. Tao, J., Zhang, N., Chang, J., Chen, L., Zhang, H., & Chi, Y. (2022). Unlabeled sample selection for mineral prospectivity mapping by semi-supervised support vector machine. Natural Resources Research, 31(5), 2247-2269.
[13]. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35-50.
[14]. Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16-28.
[15]. McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25(2), 125-143.
[16]. Zhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525-2539.
[17]. Zhang, Z. J., Cheng, Q. M., Yang, J., & Hu, X. L. (2018). Characterization and origin of granites from the Luoyang Fe deposit, southwestern Fujian Province, South China. Journal of Geochemical Exploration, 184, 119-135.
[18]. Mohammadzadeh, M., & Nasseri, A. (2018). Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran. Journal of African Earth Sciences, 139, 173-183.
[19]. Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., & Cheng, Q. (2022). Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province. Ore Geology Reviews, 143, 104765.
[20]. Li, S., Chen, J., Liu, C., & Wang, Y. (2021). Mineral prospectivity prediction via convolutional neural networks based on geological big data. Journal of Earth Science, 32, 327-347.
[21]. Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32(1), 1-16.
[22]. Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2015). The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Frontiers of Earth Science, 9, 342-354.
[23]. Zaidi, F. K., Nazzal, Y., Ahmed, I., Naeem, M., & Jafri, M. K. (2015). Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. Journal of African Earth Sciences, 111, 156-169.
[24]. Aryafar, A., & Roshanravan, B. (2020). Improved index overlay mineral potential modeling in brown-and green-fields exploration using geochemical, geological and remote sensing data. Earth Science Informatics, 13, 1275-1291.
[25]. Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., van der Meijde, M., & van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374-387.
[26]. Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: a knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556-567.
[27]. Hosseini, S. A., & Abedi, M. (2015). Data envelopment analysis: a knowledge-driven method for mineral prospectivity mapping. Computers & Geosciences, 82, 111-119.
[28]. Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research, 26, 457-464.
[29]. Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. " O'Reilly Media, Inc.".
[30]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689.
[31]. Zhou, Q., Yin, J. Y., Liang, W. Y., Chen, D. M., Yuan, Q., Feng, B. L., ... & Wang, Y. T. (2021). Various machine learning approaches coupled with molecule simulation in the screening of natural compounds with xanthine oxidase inhibitory activity. Food & function, 12(4), 1580-1589.
[32]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[33]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[34]. Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[35]. Keykhay-Hosseinpoor, M., Kouhsari, A. H., Hossein Morshedy, A., & Porwal, A. (2021). Porphyry Cu-Au prospectivity modelling using semi-supervised learning algorithm in Dehsalm district, eastern Iran. Journal of Economic Geology, 13(1), 193-213.
[36]. Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, M., & Daneshvar Saein, L. (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. Geopersia, 12(1), 191-199.
[37]. Chen, Y., & Lu, L. (2023). The Anomaly Detector, Semi-supervised Classifier, and Supervised Classifier Based on K-Nearest Neighbors in Geochemical Anomaly Detection: A Comparative Study. Mathematical Geosciences, 1-23.
[38]. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. J. O. G. R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
[39]. Wang, Z., & Zuo, R. (2022). Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network. Computers & Geosciences, 158, 104974.
[40]. Seyedrahimi-Niaraq, M., Mahdiyanfar, H., & Mokhtari, A. R. (2022). Integrating principal component analysis and U-statistics for mapping polluted areas in mining districts. Journal of Geochemical Exploration, 234, 106924.
[41]. Hosseinzadeh, G., Calagari, A. A., Moayyed, M., Hadj-Alilu, B., & Moazzen, M. (2010). Study of Hypogen Alteration and Copper Mineralization in Sonajil Area (East of Herris, East Azarbaidjan). Scientific Quarterly Journal of Geosciences, 19(74), 3-12.
[42]. Moshefi, P., Hosseinzadeh, M. R., Moayyed, M., & Lentz, D. R. (2018). Comparative study of mineral chemistry of four biotite types as geochemical indicators of mineralized and barren intrusions in the Sungun Porphyry Cu-Mo deposit, northwestern Iran. Ore Geology Reviews, 97, 1-20.
[43]. Hernández-González, J., Inza, I., & Lozano, J. A. (2013). Learning Bayesian network classifiers from label proportions. Pattern Recognition, 46(12), 3425-3440.
[44]. Wu, J., Pan, S., Zhu, X., Cai, Z., Zhang, P., & Zhang, C. (2015). Self-adaptive attribute weighting for Naive Bayes classification. Expert Systems with Applications, 42(3), 1487-1502.
[45]. Webb, G. I., Boughton, J. R., Zheng, F., Ting, K. M., & Salem, H. (2012). Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification. Machine learning, 86, 233-272.
[46]. Taalab, K., Corstanje, R., Zawadzka, J., Mayr, T., Whelan, M. J., Hannam, J. A., & Creamer, R. (2015). On the application of Bayesian networks in digital soil mapping. Geoderma, 259, 134-148.
[47]. Webb, A. R., & Copsey, K. D. (2002). Statistical Pattern Recognition. John Wiley & Sons. New York, USA.
[48]. Zabihi, S. M., & Akbarzadeh-T, M. R. (2012). Generalized fuzzy C-means clustering with improved fuzzy partitions and shadowed sets. International Scholarly Research Notices, 2012.
[49]. Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
[50]. Xie, X. L., & Beni, G. (1991, August). A new fuzzy clustering validity criterion and its application to color image segmentation. In Proceedings of the 1991 IEEE International Symposium on Intelligent Control (pp. 463-468). IEEE.
[51]. Bensaid, A. M., Hall, L. O., Bezdek, J. C., Clarke, L. P., Silbiger, M. L., Arrington, J. A., & Murtagh, R. F. (1996). Validity-guided (re) clustering with applications to image segmentation. IEEE Transactions on fuzzy systems, 4(2), 112-123.
[52]. Salehi, T., & Tangestani, M. H. (2020). Per-pixel analysis of ASTER data for porphyry copper hydrothermal alteration mapping: a case study of NE Isfahan, Iran. Remote Sensing Applications: Society and Environment, 20, 100377.
[53]. Zhao, Z. F., Zhou, J. X., Lu, Y. X., Chen, Q., Cao, X. M., He, X. H., ... & Feng, W. J. (2021). Mapping alteration minerals in the Pulang porphyry copper ore district, SW China, using ASTER and WorldView-3 data: Implications for exploration targeting. Ore Geology Reviews, 134, 104171.
[54]. Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore geology reviews, 44, 1-9.
[55]. Aghazadeh, M., Hou, Z., Badrzadeh, Z., & Zhou, L. (2015). Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore geology reviews, 70, 385-406.
[56]. Du, X., Zhou, K., Cui, Y., Wang, J., & Zhou, S. (2021). Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model. ISPRS International Journal of Geo-Information, 10(11), 766.
[57]. Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Australian Journal of Earth Sciences, 64(5), 639-651.
[58]. Ding, K., Xue, L., Ran, X., Wang, J., & Yan, Q. (2022). Siamese network based prospecting prediction method: A case study from the Au deposit in the Chongli mineral concentrate area in Zhangjiakou, Hebei Province, China. Ore Geology Reviews, 105024.
[59]. Oonk, S., & Spijker, J. (2015). A supervised machine-learning approach towards geochemical predictive modelling in archaeology. Journal of archaeological science, 59, 80-88.
[60]. Sun, G., Zeng, Q., & Zhou, J. X. (2022). Machine learning coupled with mineral geochemistry reveals the origin of ore deposits. Ore Geology Reviews, 142, 104753.
[61]. Zhang, N., Zhou, K., & Li, D. (2018). Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Science Informatics, 11, 553-566.