[1]. Alam, H. G., Moghaddam, A. Z., & Omidkhah, M. R. (2008). The influence of process parameters on desulfurization of Mezino coal by HNO 3 / HCl leaching. Fuel Processing Technology, 0, 1–7.
[2]. Amini, E., Hosseini, T. R., Oliazadeh, M., & Kolahdoozan, M. (2009). Application of acidithiobacillus ferrooxidans in coal flotation. International Journal of Coal Preparation and Utilization, 29(6), 279–288.
[3]. ASTM D3176-09 Standards, Standard Practice for Ultimate Analysis of Coal and Coke. (2013). American Society for Testing and Materials.
[4]. Aytar, P., Kay, C. M., Mutlu, M. B., & Çabuk, A. (2013). Coal desulfurization with acidithiobacillus ferrivorans, from Balya acidic mine drainage. Energy and Fuels, 27(6), 3090–3098.
[5]. Çabuk, A., Koca, S., & Koca, H. (2014). Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization, 116, 634–641.
[6]. Dai, S., Jiang, Y., Ward, C. R., Gu, L., Seredin, V. V., Liu, H., Zhou, D., Wang, X., Sun, Y., Zou, J., & Ren, D. (2012). Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40.
[7]. Duz, M. Z., Saydut, A., Erdogan, S., & Hamamci, C. (2009). Removal of sulfur and ash from coal using molten caustic leaching , a case study from Hazro fields , Turkey, 27(6), 391–400.
[8]. Eghbali, F., & Ehsani, M. (2010). Biodesulfurization of Tabas Coal in Pilot Plant Scale. Iranian Journal of Chemistry and Chemical Engineering, 29, 75–78.
[9]. Ehsani, M. (2006). Desulfurization of Tabas Coals Using Chemical Reagents. Iranian Journal of Chemistry and Chemical Engineering, 25.
[10]. El-Midany, A. A., & Abdel-Khalek, M. A. (2014). Reducing sulfur and ash from coal using Bacillus subtilis and Paenibacillus polymyxa. Fuel, 115, 589–595.
[11]. Etemadzadeh, S. S., Emtiazi, G., & Etemadifar, Z. (2016). Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells. Current Microbiology, 72(6), 707–715.
[12]. Golshani, T., Jorjani, E., Chehreh, C. S., Shafaei, S. Z., & Heidari, N. Y. (2013). International Journal of Mining Science and Technology Modeling and process optimization for microbial desulfurization of coal by using a two-level full factorial design. International Journal of Mining Science and Technology, 23(2), 261–265.
[13]. He, H., Hong, F.-F., Tao, X.-X., Li, L., Ma, C.-Y., & Zhao, Y.-D. (2012). Biodesulfurization of coal with Acidithiobacillus caldus and analysis of the interfacial interaction between cells and pyrite. Fuel Processing Technology, 101, 73–77.
[14]. Jorjani, E., Chelgani, S. C., & Mesroghli, S. (2008). Application of artificial neural networks to predict chemical desulfurization of Tabas coal, 87, 2727–2734.
[15]. Jorjani, E., Rezai, B., Vossoughi, M., & Osanloo, M. (2004). Desulfurization of Tabas coal with microwave irradiation / peroxyacetic acid washing at 25 , 55 and 85 8 C, 83, 943–949.
[16]. Kiani, M. H., Ahmadi, A., & Zilouei, H. (2014). Biological removal of sulphur and ash from fine-grained high pyritic sulphur coals using a mixed culture of mesophilic microorganisms. Fuel, 131, 89–95.
[17]. Liu, T., Hou, J.-H., & Peng, Y.-L. (2017). Biodesulfurization from the high sulfur coal with a newly isolated native bacterium, Aspergillus sp. DP06. Environmental Progress & Sustainable Energy, 36(2), 595–599.
[18]. Malik, A., Dastidar, M. G., & Roychoudhury, P. K. (2001). Biodesulphurization of coal: Effect of pulse feeding and leachate recycle. Enzyme and Microbial Technology, 28(1), 49–56.
[19]. Milan, A. D., Ahmadi, A., & Hosseini, S. M. R. (2017). Biodesulfurization of a Coarse-Grained High Sulfur Coal in a Full-Scale Packed-Bed Bioreactor. Solid State Phenomena, 262, 207–210.
[20]. Mishra, S., Pradhan, N., Panda, S., & Akcil, A. (2016). Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Processing Technology, 152, 325–342.
[21]. Misra, M., Bukka, K., & Chen, S. (1996). The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Minerals Engineering, 9(2), 157–168.
[22]. San Martín, F., Kracht, W., Vargas, T., & Rudolph, M. (2020). Mechanisms of pyrite biodepression with Acidithiobacillus ferrooxidans in seawater flotation. Minerals Engineering, 145(October 2019), 106067.
[23]. Shahbazi, M., Abdollahi, H., Shafaei, S. Z., Pourkarimi, Z., Jannesar Malakooti, S., Rahimi, M., & Ebrahimi, E. (2022). Desulfurization of Tabas coal using chemical (Meyers, Molten caustic leaching) and biological (bioleaching) methods. International Journal of Mining and Geo-Engineering.
[24]. Subramanian, S., Santhiya, D., & Natarajan, K. A. (2003). Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing, 72(1–4), 175–188.
[25]. Vijayalakshmi, S. P., & Raichur, A. M. (2002). Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. International Journal of Mineral Processing, 67(1–4), 199–210.
[26]. Xia, W., & Xie, G. (2017). A technological review of developments in chemical-related desulfurization of coal in the past decade. International Journal of Mineral Processing.
[27]. Xu, J., Liu, X., Song, C., Du, Z., Wang, F., Chen, X., & Zhou, A. (2019). Environmental Effects Biodesulfurization of high sulfur coal from Shanxi : Optimization of the desulfurization parameters of three kinds of bacteria Biodesulfurization of high sulfur coal from Shanxi : Optimization of the desulfurization parameters of thr. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 00(00), 1–19.
[28]. Xu, J., Liu, X., Song, C., Du, Z., Wang, F., Luo, J., Chen, X., & Zhou, A. (2020). Biodesulfurization of high sulfur coal from Shanxi: Optimization of the desulfurization parameters of three kinds of bacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(18), 2297–2315.
[29]. Yue, L., Jiao, Y., Wu, L., Rong, H., Fayek, M., & Xie, H. (2020). Evolution and origins of pyrite in sandstone-type uranium deposits, northern Ordos Basin, north-central China, based on micromorphological and compositional analysis. Ore Geology Reviews, 118, 103334.