[1]. Raj, C., & Singh, V. (2021). Spatial and temporal variation of fluvial islands and sandbars in River Ganga from Bhagalpur to Farakka during 1955–2019. Sustainable Water Resources Management, 7(3), 38.
[2]. Dwivedi, S. L., & Pathak, V. (2007). A preliminary assignment of water quality index to Mandakini River, Chitrakoot. Indian Journal of Environmental Protection, 27(11), 1036.
[3]. Gupta, S. K., Singh, P. K., Tyagi, J., Sharma, G., & Jethoo, A. S. (2020). Rainstorm‐generated sediment yield model based on soil moisture proxies (SMP). Hydrological Processes, 34(16), 3448-3463.
[4]. Gupta, S. K., Tyagi, J., Sharma, G., Jethoo, A. S., & Singh, P. K. (2019). An event-based sediment yield and runoff modeling using soil moisture balance/budgeting (SMB) method. Water Resources Management, 33, 3721-3741.
[5]. Gupta, S. K., Tyagi, J., Singh, P. K., Sharma, G., & Jethoo, A. S. (2019). Soil Moisture Accounting (SMA) based sediment graph models for small watersheds. Journal of Hydrology, 574, 1129-1151.
[6]. Gupta, N. K., Jethoo, A. S., & Gupta, S. K. (2016). Rainfall and surface water resources of Rajasthan State, India. Water Policy, 18(2), 276-287.
[7]. Sihag, P., & Gupta, S. K. (2023). Discussion of “Prediction of Maximum Scour Depth near Spur Dikes in Uniform Bed Sediment Using Stacked Generalization Ensemble Tree-Based Frameworks” by Manish Pandey, Mehdi Jamei, Masoud Karbasi, Iman Ahmadianfar, and Xuefeng Chu. Journal of Irrigation and Drainage Engineering, 149(1), 07022019.
[8]. Gaikwad, S. K., Kadam, A. K., Ramgir, R. R., Kashikar, A. S., Wagh, V. M., Kandekar, A. M., ... & Kamble, K. D. (2020). Assessment of the groundwater geochemistry from a part of west coast of India using statistical methods and water quality index. HydroResearch, 3, 48-60.
[9]. He, S., Li, P., Wu, J., Elumalai, V., & Adimalla, N. (2020). Groundwater quality under land use/land cover changes: a temporal study from 2005 to 2015 in Xi’an, northwest China. Human and Ecological Risk Assessment: An International Journal, 26(10), 2771-2797.
[10]. Choque-Quispe, D., Froehner, S., Palomino-Rincón, H., Peralta-Guevara, D. E., Barboza-Palomino, G. I., Kari-Ferro, A., ... & Choque-Quispe, Y. (2022). Proposal of a water-quality index for high Andean basins: application to the Chumbao river, Andahuaylas, Peru. Water, 14(4), 654.
[11]. Mishra, A., & Lal, B. (2023). Assessment of groundwater quality in Ranchi district, Jharkhand, India, using water evaluation indices and multivariate statistics. Environmental Monitoring and Assessment, 195(4), 472.
[12]. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water research, 38(18), 3980-3992.
[13]. Chu, C., Ritter, W., & Sun, X. (2019). Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence. Energy Policy, 125, 487-502.
[14]. Xu, H. S., Xu, Z. X., Wu, W., & Tang, F. F. (2012). Assessment and spatiotemporal variation analysis of water quality in the Zhangweinan River Basin, China. Procedia Environmental Sciences, 13, 1641-1652.
[15]. Singha, S., Pasupuleti, S., Singha, S. S., Singh, R., & Kumar, S. (2021). Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276, 130265.
[16]. El Bilali, A., Taleb, A., & Brouziyne, Y. (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, 106625.
[17]. Spijker, J., Fraters, D., & Vrijhoef, A. (2021). A machine learning based modelling framework to predict nitrate leaching from agricultural soils across the Netherlands. Environmental Research Communications, 3(4), 045002.
[18]. Mishra, A., & Lal, B. (2023). Assessment of groundwater quality in Ranchi district, Jharkhand, India, using water evaluation indices and multivariate statistics. Environmental Monitoring and Assessment, 195(4), 472.
[19]. Knoll, L., Breuer, L., & Bach, M. (2020). Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environmental Research Letters , 15 (6), 064004.
[20]. Elbeltagi, A., Pande, C. B., Kouadri, S., & Islam, A. R. M. T. (2022). Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India. Environmental Science and Pollution Research, 1-15.
[21]. Agrawal, P., Sinha, A., Kumar, S., Agarwal, A., Banerjee, A., Villuri, V. G. K., ... & Pasupuleti, S. (2021). Exploring artificial intelligence techniques for groundwater quality assessment. Water, 13(9), 1172.
[22]. Bedi, S., Samal, A., Ray, C., & Snow, D. (2020). Comparative evaluation of machine learning models for groundwater quality assessment. Environmental Monitoring and Assessment, 192, 1-23.
[23]. Raheja, H., Goel, A., & Pal, M. (2022). Prediction of groundwater quality indices using machine learning algorithms. Water Practice & Technology, 17(1), 336-351.