[1]. Sarfarazi, V., Haeri, H., Fatehi Marji, M., Saeedi, G., & Namdarmanesh, A. (2023). Investigation of Shear Properties of Open Non-persistent Latitudinal Discontinuities of Same Level. Journal of Mining and Environment, 14(4), 1361-1371.
[2]. Rezaei, A., Sarfarazi, V., Babanouri, N., Omidi Manesh, M., & Jahanmiri, S. (2023). Failure Mechanism of Rock Pillar Containing Two Edge Notches: Experimental Test and Numerical Simulation. Journal of Mining and Environment, 14(3), 961-971.
[3]. Omidi Manesh, M., Sarfarazi, V., Babanouri, N., & Rezaei, A. (2023). Investigation of External Work, Fracture Energy, and Fracture Toughness of Oil Well Cement Sheath using HCCD Test and CSTBD Test. Journal of Mining and Environment, 14(2), 619-634.
[4]. Bhardwaj, A., & Sharma, R.K. (2022). Bearing Capacity Evaluation of Shallow Foundations on Stabilized Layered Soil using ABAQUS. Studia Geotechnica et Mechanica, 45(1): 55-71.
[2]. Bhardwaj, A., & Sharma, R. K. (2023b). Influence of industrial wastes and lime on strength characteristics of clayey soil. Magazine of Civil Engineering, 120(4): 5-13.
[3]. Siddique, T., & Pradhan, S.P. (2018). Stability and sensitivity analysis of Himalayan Road cut debris slopes: an investigation along NH-58, India. Natural Hazards, 93: 577–600.
[4]. Ray, A., Kumar, R.E.S.C., Bharati, A.K., Rai, R., & Singh, T.N. (2019). Hazard chart for identification of potential landslide due to the presence of residual soil in the Himalayas. Indian Geotechnical Journal.
[5]. Pradhan, S.P. & Siddique, T. (2020). Stability assessment of landslide-prone road cut rock slopes in Himalayan terrain: a finite element method-based approach. Journal of Rock Mechanics and Geotechnical Engineering, 12: 59–73,
[6]. Uray, E. & Tan, O. (2015a). Gabion tipi dayanma yapıları. Türkiye Mühendislik Haberleri, 60(2): 19–29. Retrieved from:
[7]. Mehrotra, G.S., Bhagat, N.C., & Sarkar, S. (1991). Landslide hazards in Garhwal Himalayas, Mussoorie slide – A case study. Proceedings of the Ninth Asian Regional Conference on Soil Mechanics and Foundation Engineering, 1: 409-414 December, Bangkok, Thailand.
[8]. Peerdawood, C. T. & Mawlood, Y. (2010). Analytical Study for Stability of Gabion Walls. Journal of Pure and Applied Sciences, 22(5).
[9]. Karpe, V., Sarang, P., & Dias, N. (2010). Stabilization of slope for hill road at Chorla Ghat. In Indian geotechnical conference-2010, GEO trendz.
[10]. Ramli, M., Karasu, T. J. R., & Dawood, E. T. (2013). The stability of gabion walls for earth retaining structures. Alexandria Engineering Journal, 52(4): 705–710.
[11]. Lin, Y. & Fang, Y. (2013a). Settlement Behavior of New Reinforced Earth Retaining Walls under Loading-Unloading Cycles. Applied Mechanics and Materials, 256–259 (PART 1): 215–219.
[12]. Lin, Y. & Yang, G. (2013b). Dynamic Deformation Behavior and Life Analysis of Green Reinforced Gabion Retaining Wall. Applied Mechanics and Materials, 256–259 (PART 1): 251–255.
[13]. Amato, G., Obrien, F., Simms, C. K., & Ghosh, B. (2013). Multibody modelling of gabion beams for impact applications. International Journal of Crashworthiness, 18(3): 237–250.
[18]. Chikute, G. C. & Sonar, I. P. (2019). Failures of gabion walls. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(11): 1384–1390.
[19]. Uray, E. & Tan, O. (2015(b). Investigation of design criteria for the type of gabion walls. Digital Proceeding of International Conference on Civil and Environmental Engineering ICOCEE, 1571–1581.
[20]. Sarkar, S. & Samanta, M. (2017). Stability analysis and remedial measures of a landslip at Keifang, Mizoram–a case study. Journal of the Geological Society of India, 89: 697-704.
[21]. Wang, Y., Smith, J. V, & Nazem, M. (2021). Optimisation of a Slope-Stabilisation System Combining Gabion-Faced Geogrid-Reinforced Retaining Wall with Embedded Piles. KSCE Journal of Civil Engineering, 25(12): 4535–4551.
[22]. Grodecki, M. (2021). Numerical modelling of gabion retaining wall under loading and unloading. Archives of Civil Engineering, 67(2): 155–164.
[23]. Pereira, B. & Fernandes, W. (2021). Gabion Walls—A Remedial Measure for Slope Stabilization. In Indian Geotechnical Conference (pp. 409-419). Singapore: Springer Nature Singapore.
[24]. Holtz, R.D. & Schuster, R.L. (1996). Stabilization of soil slopes. In Landslides Investigation and Mitigation, Eds. Turner A.K. and Schuster, R.L., Special Report 247, Transportation Research Board.
[25]. Chikute, G.C. & Sonar, I.P. (2021). Gabion Wall: Eco-friendly and Cost-Efficient Retaining Wall. In Advances in Sustainable Construction Materials: Select Proceedings of ASCM 2020 (pp. 229-249). Singapore: Springer Singapore.
[26]. Chikute, G.C. & Sonar, I.P. (2019). Failures of Gabion walls. International Journal of Innovative Technology and Exploring Engineering (IJITEE). ISSN: 2278–3075, 8(1).
[27]. Sharma, P. (2017). Evaluation and comparison of classical earth pressure theories for cohesionless backfill using professional software. International journal of Creative Research thoughts (IJCRT) 5(4).
[28]. Keskin, I. (2017). Stability analysis of a high stone retaining wall: a case of Eskipazar/Turkey. International Journal of Advanced Research 3(2).
[29]. Asadpour, H. & Akhlaghi, T. (2017). Stability analysis of Gabion wall with tieback in seismic regions. Civil Engineering Journal 3(5):319–33.
[30]. IS - 1893. (2002) Criteria for earthquake resistant design of structures. Indian Standard, New Delhi.
[31]. IS - 14458. (1998) Retaining wall for hill area guidelines: Construction of gabion walls.
[32]. EN 10223-3: Steel wire and wire products for fencing and netting - Part 3: Hexagonal steel wire mesh products for civil engineering purposes
[33]. ASTM A 975: Standard Specification for Double-Twisted Hexagonal Mesh Gabions and Revet Mattresses (Metallic-Coated Steel Wire or Metallic-Coated Steel Wire with Poly (Vinyl Chloride) (PVC) Coating).
[34]. IS - 16014: Mechanically woven, double -twisted, hexagonal Wire Mesh Gabions, Revet Mattresses, and Rock fall Netting (Galvanized steel wire or Galvanized steel wore with PVC coating) – Specification.