Document Type : Original Research Paper


1 Hamedan university of technology, mining engineering department

2 Department of Mining Engineering, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman, Kerman, Iran

3 Yazd University

4 Mining Engineering Department, Shahid Bahonar University of Kerman



The mechanical behaviour of transversely isotropic elastic rocks can be numerically simulated by the discrete element method. The successive bedding layers in these rocks may have different mechanical properties. The aim of this research work is to investigate numerically the effect of anisotropy on the tensile behaviour of transversely isotropic rocks. Therefore, the numerical simulation procedure should be well-calibrated by using the conventional laboratory tests, i.e. tensile (Brazilian), uniaxial, and triaxial compression tests. In this study, two transversely isotropic layers were considered in 72 circular models. These models were prepared with the diameter of 54 mm to investigate the anisotropic effects of the bedding layers on the mechanical behaviour of brittle geo-materials. All these layers were mutually perpendicular in the simulated models, which contained three pairs of thicknesses 5 mm/10 mm, 10 mm/10 mm, and 20 mm/10 mm. Three different diameters for models were chosen, i.e. 5 cm, 10 cm, and 15 cm. These samples were subjected under two different loading rates, i.e. 0.01 mm/min and 10 mm/min. The results gained from these numerically simulated models showed that in the weak layers, the shear cracks with the inclination angles 0° to 90° were developed (considering 15° increment). Also there was no change in the number of shear cracks as the layer thickness was increased. Some tensile cracks were also induced in the intact material of the models. There was no failure in the interface plane toward the layer of higher strength in this research work. The branching was increased by increasing the loading rate. Also the model strength was decreased by increasing the model scale.


Main Subjects