Document Type : Original Research Paper


1 Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran



Determining the appropriate blasting pattern is important to prevent any damage to the tunnel perimeter in conventional tunneling by blasting operation in hard rocks. In this research work, the LS-DYNA software and numerical finite element method (FEM) are used for simulation of the blasting process in the Miyaneh-Ardabil railway tunnel. For this aim, the strong explosive model and nonlinear kinematic plastic material model are considered. Furthermore, the parameters required for the Johnson-Holmquist behavioral model are based on the Johnson-Holmquist-Ceramic material model relationships and are determined for the andesitic rock mass around studied tunnel. The model geometry is designed using AUTOCAD software and Hyper-mesh software is applied for meshing simulation. After introducing elements properties and material behavioral models and applying control and output parameters in LS-PrePost software, the modeling process is performed by LS-DYNA software. Different patterns of blastholes including 66, 23, and 19 holes, with diameters of 40 and 51 mm, and depths of 3 to 3.8 m are investigated by three-dimensional FEM. The borehole pressure caused by the ammonium nitrate-fuel oil (ANFO) detonation is considered based on the Jones-Wilkins-Lee (JWL) equation of state in the LS-DYNA software. The outer boundaries of the model are considered non-reflective to prevent the wave’s return. The results showed that LS-DYNA software can efficiently simulate the blasting process. Moreover, the post-failure rate of the blasting is reduced by more than 30% using the main charge with less explosive power and reducing the distance and diameter of contour holes.


Main Subjects