[1]. Reza, M. and Aghajani, A. (2019). Cutoff grades optimization in open pit mines using meta-heuristic algorithms. Resources Policy, 60, 72-82.
[2]. Batlile, N., Adachi, T., and Kawamura, Y. (2023). Application of Artificial Neural Network for the Prediction of Copper Ore Grade. Minerals, 13 (5).
[3]. Battalgazy, N., Valenta, R., Gow, P., Spier, C., and Forbes, G. (2023). Addressing Geological Challenges in Mineral Resource Estimation: A Comparative Study of Deep Learning and Traditional Techniques. Minerals, 13(7).
[4]. Alimoradi, A., Maleki, A., Karimi, M., Sahafzadeh, S., and Abbasi. (2020). Integrating Geophysical Attributes with New Cuckoo Search Machine Learning Algorithm to Estimate Silver Grade Values–Case Study: Zarshouran Gold Mine. Journal of Mining and Environment (JME), 11 (3), 865-879.
[5]. Zhang, S., Nwaila, G., Bourdeau, J., Ghorbani, Y., and Carranza, E. (2023). Machine Learning-based Delineation of Geodomain Boundaries: A Proof-of-Concept Study using Data from the Witwatersrand Goldfields. Natural Resources Research, 32, 879-900.
[6]. Deutsch, J., Szymanski, J., and Deutsch, C. (2014). Checks and measures of performance for kriging estimates. Journal of the Southern African Institute of Mining and Metallurgy, 114 (3).
[7]. Ro, Y. and Yoo, C. (2022). Numerical Experiments Applying Simple Kriging to Intermittent and Log-Normal Data. Water, 14 (9).
[8]. Park, N., Kyriakidis, P., and Young, S. (2016). Spatial Estimation of Classification Accuracy Using Indicator Kriging with an Image-Derived Ambiguity Index. Remote Sens, 8 (4).
[9]. Giraldo, R., Delicado, P., and Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18, 411-426.
[10]. Dumakor-Dupey, N. and Arya, S. (2021). Machine Learning—A Review of Applications in Mineral Resource Estimation. Energies, 14, 4079.
[11]. Ghasemitabar, H., Alimoradi, A., Hemati, H., and Fathi, M. (2024). Intelligent Borehole Simulation with python Programming. Journal of Mining and Environment, 15 (2), 707-730.
[12]. Lloyd, C. and Atkinson, P. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. Computers & Geosciences, 27 (8), 929-937.
[13]. Gia, T., Kappas, M., Van, C., and Khanh, L. (2019). Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam. ISPRS Int. J. Geo-Inf, 8 (3).
[14]. Emrah, U. and Topal, E. (2020). A New Ore Grade Estimation using Combine Machine Learning Algorithms. Minerals, 10 (10).
[15]. Li, X., Xie, Y., Guo, Q., and Li, L. (2010). Adaptive ore grade estimation method for the mineral deposit evaluation. Mathematical and Computer Modelling, 52 (11-12), 1947-1956.
[16]. Chatterjee, S., Bandopadhyay, S., and Machuca, D. (2010). Ore Grade Prediction using a Genetic Algorithm and Clustering-based Ensemble Neural Network Model. Mathematical Geosciences, 42 (3), 309-326.
[17]. Guerra, C., Souza, C., and Muico, E. (2023). Ore-Grade Estimation from Hyperspectral Data using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology, 118 (8), 1899-1921.
[18]. Nagpal, G., Shrikant, S., Krishna, N., Nagpal, A., and Mohan, G. (2022). Ore Grade Estimation in Mining Industry from petro-physical data using neural networks. ICIMMI '22: Proceedings of the 4th International Conference on Information Management & Machine Intelligence, 75, 1-5.
[19]. Mostafaei, K. and Ramazi, H. (2018). 3D model construction of induced polarization and resistivity data with quantifying uncertainties using geostatistical methods and drilling (Case study: Madan Bozorg, Iran). Journal of Mining & Environment, 9 (4), 857-872.
[20]. Mostafaei, K. and Ramazi, H. (2019). Mineral resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the Mineral Research and Exploration, 160, 177-195.
[21]. Jafrasteh, B., Fathianpour, N., and Suárez, A. (2018). Comparison of machine learning methods for copper ore grade estimation. Comput Geosci, 22, 1371-1388.
[22]. Hekmantnejad, A., Emery, X., and Alipour, M. (2019). Comparing linear and non-linear kriging for grade prediction and ore/waste classification in mineral deposits. International Journal of Mining, Reclamation and Environment, 33 (4).
[23]. Goswami, A., Mishra, M., and Patra, D. (2022). Evaluation of machine learning algorithms for grade estimation using GRNN & SVR. Engineering Research Express, 4 (3).
[24]. Fathi, M., Alimoradi, A., and Hemati, H. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade. Journal of Mining and Environment (JME), 12 (2), 397-411.
[25]. Alimoradi, A., Hajkarimian, H., Hemati, H., and Salsabili, M. (2022). Comparison between the performances of four metaheuristic algorithms in training a multilayer perceptron machine for gold grade estimation. International Journal of Mining and Geo-Engineering, 56 (2), 97-105.
[26]. Sarantsatsral, N., Ganguli, R., Pothina, R., and Tumen, B. (2021). A Case Study of Rock Type Prediction using Random Forests: Erdenet Copper Mine, Mongolia. Minerals, 11 (10).
[27]. Afzal, P., Farhadi, S., Boveiri, M., Shamseddin, M., and Daneshvar, L. (2022). Geochemical Anomaly Detection in the Irankuh District using Hybrid Machine Learning Technique and Fractal Modeling. Geopersia, 12 (1), 191-199.
[28]. Patel, A., Chatterjee, S., and Gorai, A. (2019). Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades. Earth Sci Inform, 12, 197-210.
[29]. Farhadi, S., Afzal, P., Boveiri, M., Daneshvar, L., and Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12 (6), 689.
[30]. Xie, J., Wang, Q., Liu, P., and Li, Z. (2021). A hyperspectral method of inverting copper signals in mineral deposits based on an improved gradient-boosting regression tree. International Journal of Remote Sensing, 42 (14), 5474-5492.
[31]. Sola, J. and Sevilla, J. (1997). Importance of input data normalization for the application of neural networks to complex. IEEE Trans. Nucl. Sci, 44, 1464-1468.
[32]. Larsen, R. and Marx, M. (2005). An Introduction to Mathematical Statistics and its Applications, UK: Prentice Hall: London.
[33]. Singh. D. and Singh, B. (2019). Investigating the impact of data normalization on classification performance. Appl. Soft Comput., 105524.
[34]. Irie, B. and Miyake, S. (1988). Capabilities of three-layered perceptrons. In: IEEE International Conference on Neural Networks, 1988, 641-648.
[35]. Gomes, G., Ludermir, T., and Lima, L. (2011). Comparison of new activation functions in neural network for forecasting financial time series. Neural Comput. Applic, 20 (3), 417-439.
[36]. Criminisi, A., Shotton, J., and Konukoglu, E. (2012). Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Computer Graphics and Vision, 7 (223), 81-227.
[37]. Trehan, S., Carlberg, K., and Durlofsky, L. (2017). Error modeling for surrogates of dynamical systems using machine learning. International Journal for Numerical Methods in Engineering.
[38]. Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res, 15, 3133-3181.
[39]. Ho, T. (1998). The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell, 20 (8), 832-844.
[40]. Breiman, L. (1996). Bagging predictors. Mach. Learn, 24 (2), 123-140.
[41]. Friedman, J. (2001). Greedy boosting approximation: A gradient boosting machine. Annal. Stat, 29 (5), 1189-1232.
[42]. Breiman, L., Friedman, J., and Olshen, R. (1984). Classification and regression trees. Wadsworth int, Group, 37 (15), 237-251.
[43]. Song, K., Yan, F., and Ding, T. (2020). A steel property optimization model based on the xgboost algorithm and improved pso. Comput. Mater. Sci, 174, 109472.
[44]. Krizhevsky, A., Sutskever. I., and Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105.
[45]. Emrah, U., Dagasan, Y., and Topal, E. (2021). Mineral grade estimation using gradient boosting regression trees. International Journal of Mining, Reclamation and Environment, 35 (10), 728-742.
[46]. Rivas-Perea, P., Cota-Ruiz, J., Chaparro, D., Venzor, J., Carreón, A., and Rosiles, J. (2013). Support vector machines for regression: a succinct review of large-scale and linear programming formulations. Int J Intell Sci, 3, 5-14.
[47]. Prasad, K., Gorai, A., and Goyal, P. (2016). Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos Environ, 128, 246-262.