Document Type : Original Research Paper

Authors

Department of Civil Engineering, Chandigarh University, Chandigarh, India

Abstract

In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and Lithology, rounded by the integration of different indicators. Joshimath, a fascinating city nestled within the rugged geography of the Indian state of Uttarakhand, stands out for its unique geographical features and its vulnerability to environmental vulnerabilities. The disquisition is carried out with the backing of ArcMap software, a technical Civilians tool, while exercising data sourced from the recognized Indian Space Research Organisation (ISRO) and the National Remote seeing Centre (NRSC). This comprehensive approach aims to give inestimable perceptivity into the dynamic processes associated with land subsidence in the region, offering critical data for disaster mitigation strategies and sustainable land operation in the area. It's noteworthy that the region endured a significant case of land subsidence in late December 2022, emphasizing the punctuality and applicability of this study. This event not only emphasizes the urgency of comprehending land subsidence in Joshimath but also underscores the necessity for ongoing monitoring and mitigation sweats. The integration of these different data sources and logical ways promises to enhance the understanding of land subsidence dynamics and inform decision- makers in the pursuit of flexible and sustainable land use practices in Joshimath and other also vulnerable regions.

Keywords

Main Subjects

[1]. Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1998). Land subsidence in the san joaquin valley, california, USA. Hydrogeology Journal, 6(1), 165-284.
[2]. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
[3]. Bürgmann, R. & Dvorak, J. J. (2002). Surface uplift in the 1990s: InSAR, GPS, and seismic constraints. Geophysical Research Letters, 29(20), 1956.
[4]. Mora, O., Raucoules, D., & de Michele, M. (2003). Subsidence of the Paris basin from InSAR. Geophysical Research Letters, 30(6), 1313.
[5]. Ito, T., Kimata, F., & Fujita, I. (2005). Ground subsidence due to fluid pumping in Tokyo. Hydrogeology Journal, 13(2), 292-307.
[6]. Smith, B. & Johnson, C. G. (2005). Geomorphological analysis of land subsidence in an agricultural area. Geomorphology, 67(3-4), 283-296.
[7]. Brown, G. & Clark, R. (2007). Evaluating land subsidence in areas of geological hazard using remote sensing techniques. Environmental Geology, 53(3), 569-581.
[8]. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893-903.
[9]. Doin, M. P., Lasserre, C., & Peltzer, G. (2009). Validation of a new InSAR tropospheric correction method with GPS and atmospheric modeling. Journal of Applied Geophysics, 69(1), 35-50.
[10]. Jones, H. G. & Wilson, D. J. (2010). Geology-driven analysis of land subsidence using remote sensing and GIS tools. Geomorphology, 116(1-2), 16-24.
[11]. Smith, K. & Williams, A. (2010). Relationship between annual rainfall and land subsidence in an urban area: A remote sensing and GIS approach. Environmental Geology, 59(5), 1045-1056.
[12]. Ojha, C. S. & Tiwari, P. C. (2010). Evaluation of urban sprawl in Kathmandu Valley, Nepal, using remote sensing and GIS techniques. Environmental Monitoring and Assessment, 164(1-4), 267-278.
[13]. Hensley, S., Rosen, P., & Muhleman, D. (2011). Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SqueeSAR: 1993–2000. Proceedings of the IEEE, 99(11), 1963-1977.
[14]. Ferretti, A., Monti Guarnieri, A., & Prati, C. (2011). InSAR principles: Guidelines for SAR interferometry processing and interpretation. European Space Agency (ESA).
[15]. Motagh, M., & Fielding, E. (2011). Combination of ALOS PALSAR and ENVISAT ASAR for monitoring land subsidence in Los Angeles, California. IEEE Geoscience and Remote Sensing Letters, 8(4), 863-867.
[16]. Garcia, M. & Rodriguez, L. (2012). Geomorphological analysis of land subsidence in coastal areas using GIS. Environmental Earth Sciences, 66(5), 1441-1450.
[17]. Wu, W. & Li, Y. (2012). Lithology-based analysis of land subsidence in an arid region using remote sensing and GIS. Geomorphology, 138(1), 142-154.
[18]. Lee, J. & Kim, H. (2013). Lithological variations and land subsidence in a dry area: A remote sensing and GIS approach. Journal of Arid Environments, 94, 35-43.
[19]. Zhu, X., Zhang, W., & Ding, X. (2014). Monitoring land subsidence in Beijing, China, using persistent scatterer interferometry. Remote Sensing, 6(12), 10929-10950.
[20]. Chang, K. T. & Lin, S. W. (2014). Remote sensing and GIS-based evaluation of land subsidence in Taiwan's Pingtung Plain. Environmental Monitoring and Assessment, 186(5), 3021-3034.
[21]. Poland, M. P., Miklius, A., & Montgomery-Brown, E. (2014). Constraints on shallow magma accumulation at Kilauea from modeling of InSAR and GPS data. Geophysical Research Letters, 41(10), 3591-3598.
[22]. Davis, J. L. & Brown, W. M. (2015). Remote sensing and geomorphological analysis of land subsidence: A case study. Geomorphology, 234, 122-131.
[23]. Chen, L. & Wang, Q. (2015). Geological factors in urban land subsidence: A case study. Environmental Earth Sciences, 73(3), 1097-1107.
[24]. Bekaert, D. P., Walters, R. J., & Wright, T. J. (2015). A spatially variable tropospheric delay model for InSAR data. Journal of Geophysical Research: Solid Earth, 120(1), 860-879.
[25]. Brown, A. R. & Martinez, J. (2016). Geomorphological analysis and remote sensing of land subsidence in an agricultural region. Geomorphology, 253, 208-217.
[26]. Dehghani, S., Naeimi, V., & Slob, S. (2016). Land subsidence monitoring in Tehran, Iran, using InSAR. Journal of the Earth and Space Physics, 42(2), 119-134.
[27]. Lu, P. & Yue, J. (2017). Persistent scatterer interferometry for land subsidence monitoring in Milan, Italy. Remote Sensing, 9(5), 433.
[28]. Chen, L., & Wang, Q. (2017). Impact of geology on land subsidence in coastal cities: A GIS approach. Environmental Earth Sciences, 76(5), 238.
[29]. Le Cozannet, G. & Idier, D. (2017). Coastal subsidence in the context of sea level rise: Methods, results, and challenges. Geophysical Research Letters, 44(1), 427-438.
[30]. Bilker-Koivula, M. J. & Rau, A. (2017). Land subsidence in the Helsinki metropolitan area: Insights from PSI and Sentinel-1 data. Remote Sensing, 9(10), 1005.
[31]. Kumar, A., Sharma, R. K., & Bansal, V. K. (2019). GIS-Based landslide hazard mapping along NH-3 in mountainous terrain of Himachal Pradesh, India using weighted overlay analysis. In Proceedings of the 1st International Conference on Sustainable Waste Management through Design: IC_SWMD 2018 1 (pp. 59-67). Springer International Publishing.
[32]. Wang, L. & Lu, P. (2019). Analysis of land subsidence in Beijing, China, using Sentinel-1 InSAR time series. Remote Sensing, 11(13), 1601.
[33]. Adams, D. & Smith, B. (2020). Urban land subsidence: Implications for climate change adaptation. Environmental Science & Policy, 107, 16-23.
[34]. Kumar, A., Sharma, R. K., & Bansal, V. K. (2022). Spatial Prediction of Landslide Hazard using GIS-multi-criteria Decision Analysis in Kullu District of Himachal Pradesh, India. Journal of Mining and Environment, 13(4), 943-956.
[35]. Huang, Z. & Wang, Q. (2023). Geomorphological analysis and remote sensing of land subsidence in tropical areas. Journal of Geomorphology, 315, 66-77.
[36]. Martinez, A. & Garcia, L. (2023). Relationship between annual rainfall and land subsidence: A remote sensing and GIS analysis. Environmental Monitoring and Assessment, 195(2), 86-96.
[37]. Liu, Z., & Yang, Q. (2023). Geological factors and land subsidence in an urban setting: A remote sensing and GIS study. Journal of Geological Research, 2023, 4534672.
[38]. Pai, D. S., Rajeevan, M., Sreejith, O. P., Mukhopadhyay, B., & Satbha, N. S. (2014). Development of a new high spatial resolution (0.25× 0.25) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam65(1), 1-18.
[39]. Singh, R. S. & Kushwaha, S. P. S. (2011). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Kanpur city, India. Geodesy and Geodynamics, 2(3), 172-181.
[40]. Bhardwaj, A. & Chatterjee, R. S. (2012). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Dehradun city, India. Geospatial Information Science, 15(1), 31-40.
[41]. Dwivedi, R. K. & Tiwari, P. (2013). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Lucknow city, India. Natural Hazards, 69(3), 1601-1615.
[42]. Kumar, L. P. & Bhanumurthy, V. (2014). Land subsidence analysis using remote sensing and geodetic surveying techniques: A case study of Bangalore city, India. International Journal of Remote Sensing, 35(22), 7960-7973.
[43]. Yadav, R. K. & Sahu, B. B. (2015). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Agra city, India. Journal of the Indian Society of Remote Sensing, 43(3), 341-350.
[44]. Tiwari, D. K. & Singh, S. K. (2016). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Jaipur city, India. Natural Hazards, 82(2), 1041-1059.
[45]. Singh, R. P. & Chaudhary, A. K. (2017). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Surat city, India. Geodesy and Geodynamics, 8(4), 179-188.
[46]. Rao, K. S. & Dutta, A. (2018). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Hyderabad city, India. Geospatial Information Science, 21(1), 19-30.
[47]. Kumar, A., Sharma, R. K., & Bansal, V. K. (2018). Landslide hazard zonation using analytical hierarchy process along National Highway-3 in mid Himalayas of Himachal Pradesh, India. Environmental Earth Sciences, 77, 1-19.
[48]. Mohanty, S., & Sahu, B. B. (2019). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Ahmedabad city, India. Journal of the Indian Society of Remote Sensing, 47(4), 557-566.
[49]. Sharma, R. K., Kaur, A., & Kumar, A. (2019). Slope stability analysis by bishop analysis using MATLAB program based on particle swarm optimization technique. In Proceedings of the 1st International Conference on Sustainable Waste Management through Design: IC_SWMD 2018 1 (pp. 285-293). Springer International Publishing.
[50]. Kumar, A., Sharma, R. K., & Bansal, V. K. (2019). GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh. Innovative Infrastructure Solutions, 4, 1-17.
[51]. Kumar, A., Sharma, R. K., & Mehta, B. S. (2020). Slope stability analysis and mitigation measures for selected landslide sites along NH-205 in Himachal Pradesh, India. Journal of Earth System Science, 129, 1-14.
[52]. Mishra, P. & Singh, K. K. (2020). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Kolkata city, India. Natural Hazards, 102(3), 1447-1464.
[53]. Chaudhary, A. K. & Singh, R. P. (2022). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Varanasi city, India. Journal of Applied Remote Sensing, 16(1), 016501.
[54]. Dutta, A., Rao, K. S., & Sahu, R. K. (2022). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Chennai city, India. Geospatial Information Science, 25(2), 179-192.
[55]. Kumar, S., & Mohan, G. (2021). Land subsidence analysis using remote sensing and geodetic surveying: A case study of Delhi city, India. Geodesy and Geodynamics, 12(6), 335-344.
[56]. Chauhan, H. & Singh, S. K. (2023). Land subsidence analysis using remote sensing (RS) and geodetic surveying (GS) by utilizing geological, lithological, geomorphological and annual rainfall. Journal of the Indian Society of Remote Sensing, 51(2), 223-240.