[1]. Hartman, H. L., & Mutmansky, J. M. (2002). Introductory mining engineering. John Wiley & Sons.
[2]. Brown, E. T. (2002). Block caving geomechanics.
[3]. Vakili, A., & Hebblewhite, B. K. (2010). A new cavability assessment criterion for longwall top coal caving. International Journal of Rock Mechanics and Mining Sciences, 47(8).
[4]. Oh, J., Bahaaddini, M., Sharifzadeh, M. and Chen, Z., (2019). Evaluation of air blast parameters in block cave mining using particle flow code. International Journal of Mining, Reclamation and Environment, 33(2), 87–101.
[5]. Guest, A. (2021). Dennis Laubscher, Pioneer of block caving. Journal of the Southern African Institute of Mining and Metallurgy, 121(5).
[6]. Alipenhani, B., Bakhshandeh Amnieh, H., & Majdi, A. (2022a). Application of finite element method for simulation of rock mass caving processes in block caving method. International Journal of Engineering, Articles in Press.
[7]. Alipenhani, B., Bakhshandeh Amnieh, H., & Majdi, A. (2022b). Physical model simulation of block caving in jointed rock mass. International Journal of Mining and Geo-Engineering.
[8]. Alipenhani, B., Hassan Bakhshandeh Aminieh, & Abbas Majdi. (2023). Investigating mechanical and geometrical effects of joints on minimum caving span in mass caving method. International Journal of Mining and Geo-Engineering, 57(2), 223–229.
[9]. Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (2022a). Cavability Assessment of Rock Mass in Block Caving Mining Method based on Numerical Simulation and Response Surface Methodology. Journal of Mining and Environment, 13(2), 579–606.
[10]. Rafiee, R., Ataei, M., KhaloKakaie, R., Jalali, S. E., & Sereshki, F. (2016). A fuzzy rock engineering system to assess rock mass cavability in block caving mines. Neural Computing and Applications, 27(7).
[11]. Rafiee, R., Ataei, M., Khalokakaie, R., Jalali, S. M. E., & Sereshki, F. (2015). Determination and assessment of parameters influencing rock mass cavability in block caving mines using the probabilistic rock engineering system. Rock Mechanics and Rock Engineering, 48(3).
[12]. Rafiee, R., Ataei, M., KhalooKakaie, R., Jalali, S. E., Sereshki, F., & Noroozi, M. (2018). Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. International Journal of Rock Mechanics and Mining Sciences, 105, 22–27.
[13]. Mohammadi, S., Ataei, M., Kakaie, R., Mirzaghorbanali, A., & Aziz, N. (2021). A probabilistic model to determine main caving span by evaluating cavability of immediate roof strata in longwall mining. Geotechnical and Geological Engineering, 39(3).
[14]. Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (2022b). Determination of Caving Hydraulic Radius of Rock Mass in Block Caving Method using Numerical Modeling and Multivariate Regression. Journal of Mining and Environment, 13(1).
[15]. Khosravi, M.H., Pipatpongsa, T., Takahashi, A. and Takemura, J.,. (2011). Arch action over an excavated pit on a stable scarp investigated by physical model tests. Soils and Foundations, 51(4), 723–735.
[16]. Khosravi, M.H., Takemura, J., Pipatpongsa, T. and Amini, M.,. (2016). In-flight excavation of slopes with potential failure planes. Journal of Geotechnical and Geoenvironmental Engineering, 142(5), 06016001.
[17]. Park, D.-W., & Kicker, D. C. (1985). Physical model study of a longwall mine. Mining Science and Technology, 3(1.
[18]. Whittaker, B. N., & Singh, R. N. (1979). Design and stability of pillars in longwall mining. Min. Eng.(London);(United Kingdom), 139(214).
[19]. McNearny, R. L., & Abel Jr, J. F. (1993). Large-scale two-dimensional block caving model tests. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(2), 93–109.
[20]. Cumming-Potvin, D., Wesseloo, J., Pierce, M. E., Garza-Cruz, T., Bouzeran, L., Jacobsz, S. W., & Kearsley, E. (2018). Numerical simulations of a centrifuge model of caving. Caving 2018: Proceedings of the Fourth International Symposium on Block and Sublevel Caving, 191–206.
[21]. Jacobsz, S. W., Kearsley, E. P., Cumming-Potvin, D., & Wesseloo, J. (2018). Modelling cave mining in the geotechnical centrifuge. In Physical Modelling in Geotechnics (pp. 809–814). CRC Press.
[22]. Bai, Q., Tu, S., & Wang, F. (2019). Characterizing the top coal cavability with hard stone band (s): Insights from laboratory physical modeling. Rock Mechanics and Rock Engineering, 52(5).
[23]. Heydarnoori, V., Khosravi, M. H., & Bahaaddini, M. (2020). Physical modelling of caving propagation process and damage profile ahead of the cave-back. Journal of Mining and Environment, 11(4).
[24]. Nishida, T., Esaki, T., & Kameda, N. (1988). A development of the base friction technique and its application to subsidence engineering. Proceedings of the International Symposium on Engineering in Complex Rock Formations, 386–392.
[25]. Aydan, Ö., & Kawamoto, T. (1992). The stability of slopes and underground openings against flexural toppling and their stabilisation. Rock Mechanics and Rock Engineering, 25(3).
[26]. Amini, M., Majdi, A., & Aydan, Ö. (2009). Stability analysis and the stabilisation of flexural toppling failure. Rock Mechanics and Rock Engineering, 42(5).
[27]. Itasca. (n.d.). UDEC (Universal Distinct Element Code) (Version 6) [Computer software].
[28]. Majdi, A., Hassani, F. P., & Nasiri, M. Y. (2012). Prediction of the height of destressed zone above the mined panel roof in longwall coal mining. International Journal of Coal Geology, 98, 62–72.