[1]. Alarie, S. and Gamache, M. (2002). Overview of solution strategies used in truck dispatching systems for open pit mines. Int J Surf Min Reclamat Environ, 16(1), 59-76.
[2]. Arteaga, F., Nehring, M. and Knights, P. (2018). The equipment utilization versus mining rate trade-off in open pit mining. Int J Min Reclamat Environ, 32(7), 495-518.
[3]. Santelices, G., Pascual, R., Luer, A., Mac Cawley, A. and Galar, D. (2017). Integrating mining loading and hauling equipment selection and replacement decisions using stochastic linear programming. Int J Min Reclamat Environ, 31(1), 52-65.
[4]. Edwards, D., Holt, G. and Harris, F. (2002). Predicting downtime costs of tracked hydraulic excavators operating in the UK opencast mining industry. Construct Manag Econ, 20(7), 581-591.
[5]. Fisonga, M. and Mutambo, V. (2017). Optimization of the fleet per shovel productivity in surface mining: case study of Chilanga Cement, Lusaka Zambia. Cogent Eng, 4(1), 1386852.
[6]. Ozdemir, B. and Kumral, M. (2018). Appraising production targets through agent-based Petri net simulation of material handling systems in open pit mines. Simulat Model Pract Theor, 87, 138-154.
[7]. Lanke, A. Hoseinie, S. and Ghodrati, B. (2016). Mine production index (MPI)-extension of OEE for bottleneck detection in mining. Int J Min Sci Technol, 26(5), 753-760.
[8]. Soofastaei, A. Karimpour, E. Knights, P. and Kizil, M. (2018). Energy-efficient loading and hauling operations. Green Energy Technol, 121-146.
[9]. Kaba, F. Temeng, V. and Eshun, P. (2016). Application of Discrete event simulation in mine production forecast. Ghana Min J, 16(1).
[10]. Jung, D. and Choi, Y. (2021). Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals, 11(2), 148.
[11]. Michalski, R. Carbonell, J. and Mitchell, T. (2013). Machine Learning: An Artificial Intelligence Approach. Springer Science & Business Media: Berlin/Heidelberg.
[12]. Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction. Applied Soft Computing, 27, 504-518.
[13]. Handelman, G. Kuan, H. Chandra, R. Razavi, A. Huang, S. Brooks, M. Asadi, H. (2019). Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol, 212(1), 38-43.
[14]. Spasic, I. and Nenadic, G. (2020). Clinical Text Data in Machine Learning: Systematic Review. JMIR Medical Informatics, 8(3).
[15]. Bellinger, C. Mohomed, M. Zaiane, O. and Osornio, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(907).
[16]. Senders, J. Staples, P. Karhade, A. Zaki, M. Gormley, W. Broekman, M. and Arnaout, O. (2018). Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurgery, 109, 476-786.
[17]. Mosavi, A. Salimi, M. Faizollahzadeh, S. Rabczuk, T. Shamshirband, S. and Varkonyi, A. (2019). State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies, 12(7), 1301.
[18]. Jenis, J. Ondriga, J. Hrcek, S. Brumercik, F. Cuchor, M. and Sadovsky, E. (2023). Engineering Applications of Artificial Intelligence in Mechanical Design and Optimization. Machines, 11(6), 577.
[19]. Whitehall, B. and Lu, S. (1991). Machine learning in engineering automation —The present and the future. Computers in Industry, 17(2-3), 91-100.
[20]. Portugal, I. Alencar, P. and Cowan, D. (2018). The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, 97, 205-227.
[21]. Mendoza, J. (2021). Optimización del valor presente neto aplicando secuenciamiento de fases direccionadas en el diseño del pit del proyecto Cotabambas-Panoro Minerals. Arequipa.
[22]. Huang G, G. Y. (2023). Application of Machine Learning in Material Synthesis and Property Prediction. Materials (Basel), 16(17), 5977.
[23]. Sarker, I. H. (2021). Machine Learning: Algorithms, Real World Applications and Research Directions. SN Computer Science, 2, 160.
[24]. Baek, J. and Choi, Y. (2019). Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Appl Sci, 9(19), 4180.
[25]. Baek, J. and Choi, Y. (2020). Deep neural network for predicting ore production by truck-haulage systems in open-pit mines. Appl Sci, 10(5), 1657.
[26]. Choi, Y. Nguyen, H. Bui, X. Nguyen-Thoi, T. and Park, S. (2021). Estimating ore production in open-pit mines using various machine learning algorithms based on a truck-haulage system and support of internet of things. Nat Resour Res, 30, 1141-1173.
[27]. Nartey, F. Kwasi, A. Nkrumah, M. and Kweku, C. (2024). Predicting open-pit mine production using machine learning techniques. Journal of Sustainable Mining, 23(2).
[28]. Fenández-Delgado, M. Cernadas, E. Barro, S. and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res, 15, 3133-3181.
[29]. Ho, T. (1998). The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell, 20(8), 832-844.
[30]. Breiman, L. (1996). Bagging predictors. Mach. Learn, 24(2), 123-140.
[31]. Friedman, J. (2001). Greedy boosting approximation: A gradient boosting machine. Annal. Stat, 29(5), 1189-1232.
[32]. Nabavi, Z. Mirzehi, M. Dehghani, H. and Ashtari, P. (2023). A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine. Journal of Mining and Environment, 14(2), 689-712.
[33]. Breiman, L. Friedman, J. and Olshen, R. (1984). Classification and regression trees. wadsworth int, Group, 37(15), 237-251.
[34]. Emrah, U. Dagasan, Y. and Topal, E. (2021). Mineral grade estimation using gradient boosting regression trees. International Journal of Mining, Reclamation and Environment, 35(10), 728-742.
[35]. Yu, K. and Zhang, X. (2002). Kernel Nearest Neighbor Algorithm. Neural Processing Letters, 15, 147-156.
[36]. Bárcena, M. J. Garín , M. A. and Matrín, A. (2017). Un simulador para asistir en la enseñanza del teorema de Bayes.
[37]. Patel, A. Chatterjee, S. and Gorai, A. (2019). Development of a machine vision system using the support vector machine regression (SVR) algorithm for the online prediction of iron ore grades. Earth Sci Inform, 12, 197-210.
[38]. Prasad, K. Gorai, A. and Goyal, P. (2016). Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos Environ, 128, 246-262.