Document Type : Review Paper

Authors

Civil Engineering Department, Chandigarh University, Mohali, Punjab, India

Abstract

Landslides affecting life and property losses has become a serious threat in various countries worldwide which highlights the importance of slope stability and mitigation. The methods and tools employed for slope stability analysis, ranging from traditional limit equilibrium methods to worldly-wise numerical modeling techniques. It focuses on the importance of accurate and reliable data collection, including geotechnical investigations, in developing precise slope stability assessments. Further, it also addresses challenges associated with predicting and mitigating slope failures, particularly in dynamic and complex environments. Mitigation strategies for unstable slopes were systematically reviewed of different researchers, encompassing both traditional and innovative measures. Traditional methods, such as retaining walls and drainage systems, the mitigation strategies were explored, emphasizing both preventive measures and remedial interventions. These include the implementation of engineering solutions such as slope structures, and Matrix Laboratory (MATLAB) techniques along with the comprehensive analysis of four prominent slope stability assessment tools: Rock Mass Rating (RMR), Slope Mass Rating (SMR), and the Limit Equilibrium Method (LEM). The comparative analysis of these tools highlights their respective strengths, limitations, and areas of application, providing researchers, authors, and practitioners with valuable insights to make informed choices based on project-specific requirements. To ensure the safety and sustainability of civil infrastructure, a thorough understanding of geological, geotechnical, and environmental factors in combination with cutting-edge technologies is required. Furthermore, it highlights the important role that slope stability assessment and mitigation play a major role in civil engineering for infrastructure development and mitigation strategies.

Keywords

Main Subjects

[1]. Bell, J. M. (1968). General slope stability analysis. Journal of the Soil Mechanics and Foundations Division94(6), 1253-1270.
[2]. Benitez, S. (1995). Evolution géodynamique de la province côtière sud-équatorienne au Crétacé supérieur-Tertiaire (Doctoral dissertation, Université Joseph-Fourier-Grenoble I).
[3]. Beyene, A., Tesema, N., Fufa, F., & Tsige, D. (2023). Geophysical and numerical stability analysis of landslide incident. Heliyon9(3).
[4]. Duncan, J. M., & Wright, S. G. (1980). The accuracy of equilibrium methods of slope stability analysis. Engineering geology16(1-2), 5-17.
[5]. Sinarta, I. N., Rifa’i, A., Faisal Fathani, T., & Wilopo, W. (2017). Slope stability assessment using trigger parameters and SINMAP methods on Tamblingan-Buyan ancient mountain area in Buleleng Regency, Bali. Geosciences7(4), 110.
[6]. Carballo, F. M., Mero, P. C., Chávez, M. Á., & Aguilar, M. (2019). Design of the stabilization solutions in the general patrimonial cemetery of Guayaquil, Ecuador. In Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education and Technology.
[7]. Fathani, T. F., Legono, D., & Karnawati, D. (2017). A numerical model for the analysis of rapid landslide motion. Geotechnical and Geological Engineering35(5), 2253-2268.
[8.]. Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., & Foltz, R. B. (2006). Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology80(3-4), 178-198.
[9]. Grozavu, A., Mărgărint, M. C., & Patriche, C. V. (2010). GIS applications for landslide susceptibility assessment: a case study in Iaşi County (Moldavian Plateau, Romania). Risk Analysis7, 393-404.
[10]. Hadmoko, D. S., Lavigne, F., Sartohadi, J., Hadi, P., & Winaryo. (2010). Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Natural Hazards54, 623-642.
[11]. Thalmann, H. E. (1946). Micropaleontology of upper Cretaceous and Paleocene in western Ecuador. AAPG Bulletin30(3), 337-347.
[12]. Hadi, A. I., Brotopuspito, K. S., Pramumijoyo, S., & Hardiyatmo, H. C. (2021, September). Determination of Weathered Layer Thickness Around the Landslide Zone using the Seismic Refraction Method. In IOP Conference Series: Earth and Environmental Science (Vol. 830, No. 1, p. 012022). IOP Publishing.
[13]. He, Y., Li, B., & Du, X. (2023). Soil slope instability mechanism and treatment measures under rainfall—A case study of a slope in Yunda Road. Sustainability15(2), 1287.
[14]. Carrión-Mero, P., Briones-Bitar, J., Morante-Carballo, F., Stay-Coello, D., Blanco-Torrens, R., & Berrezueta, E. (2021). Evaluation of slope stability in an urban area as a basis for territorial planning: A case study. Applied Sciences11(11), 5013.
[15]. Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., ... & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra36(1_suppl), 112-136.
[16]. Janbu, N. (1973). Slope stability computations. Publication of: Wiley (John) and Sons, Incorporated.
[17]. Jiaqiang, Z. O. U., Fangxin, Y. A. N. G., Weihai, Y. U. A. N., Yihui, L. I. U., Aihua, L. I. U., & Zhang, W. (2023). A kinetic energy-based failure criterion for defining slope stability by PFEM strength reduction. Engineering Failure Analysis145, 107040.
[18]. Kanungo, D. P., Pain, A., & Sharma, S. (2013). Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas. Natural hazards69, 1-24.
[19]. Karnawati, D. (2002). Basic Concept on Landslide Mapping, Department of Geological Engineering, Gadjah Mada University.
[20]. Kayastha, P. (2007). Slope stability analysis using GIS on a regional scale. Journal of Nepal Geological Society36, 19-19.
[21]. Kolapo, P., Oniyide, G. O., Said, K. O., Lawal, A. I., Onifade, M., & Munemo, P. (2022). An overview of slope failure in mining operations. Mining2(2), 350-384.
[22]. Kumar, S., Choudhary, S. S., & Burman, A. (2023). Recent advances in 3D slope stability analysis: a detailed review. Modeling Earth Systems and Environment9(2), 1445-1462.
[23]. Kumar, V., Jamir, I., Gupta, V., & Bhasin, R. K. (2021). Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya. Earth Surface Dynamics9(2), 351-377.
[24]. Lee, S., Ryu, J. H., & Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides4, 327-338.
[25]. Leshchinsky, D., Baker, R., & Silver, M. L. (1985). Three dimensional analysis of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics9(3), 199-223.
[26]. Li, X., Li, Q., Wang, Y., Liu, W., Hou, D., Zheng, W., & Zhang, X. (2023). Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions. International Journal of Mining Science and Technology33(10), 1243-1260.
[27]. Li, Y., Zhao, W., Liu, C., & Wang, L. (2023). Limit analysis for 3D stability of unsaturated inhomogeneous slopes reinforced with piles. International Journal of Geomechanics23(4), 04023022.
[28]. Machiels, L., Garces, D., Snellings, R., Vilema, W., Morante, F., Paredes, C., & Elsen, J. (2014). Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits. Applied Clay Science87, 108-119.
[29]. Machiels, L., Morante, F., Snellings, R., Calvo, B., Canoira, L., Paredes, C., & Elsen, J. (2008). Zeolite mineralogy of the Cayo formation in Guayaquil, Ecuador. Applied clay science42(1-2), 180-188.
[30]. Meisina, C., & Scarabelli, S. (2007). A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology87(3), 207-223.
[31]. Muller, J. R., & Martel, S. J. (2000). Numerical models of translational landslide rupture surface growth. Pure and Applied Geophysics157, 1009-1038.
[32]. Nanehkaran, Y. A., Licai, Z., Chengyong, J., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Comparative analysis for slope stability by using machine learning methods. Applied Sciences13(3), 1555.
[33]. Oh, S., & Lu, N. (2015). Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes. Engineering Geology184, 96-103.
[34]. Ongpaporn, P., Jotisankasa, A., & Likitlersuang, S. (2022). Geotechnical investigation and stability analysis of bio-engineered slope at Surat Thani Province in Southern Thailand. Bulletin of Engineering Geology and the Environment81(3), 84.
[35]. Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., & Baldovino, J. A. (2023). Selecting the safety and cost optimized geo-stabilization technique for soft clay slopes. Civil Engineering Journal9(02).
[36]. Pavel, M., Nelson, J. D., & Fannin, R. J. (2011). An analysis of landslide susceptibility zonation using a subjective geomorphic mapping and existing landslides. Computers & geosciences37(4), 554-566.
[37]. Pham, K., Kim, D., Choi, H. J., Lee, I. M., & Choi, H. (2018). A numerical framework for infinite slope stability analysis under transient unsaturated seepage conditions. Engineering Geology243, 36-49.
[38]. Ghasemi, E., Ataei, M., Shahriar, K., Sereshki, F., Jalali, S. E., & Ramazanzadeh, A. (2012). Assessment of roof fall risk during retreat mining in room and pillar coal mines. International Journal of Rock Mechanics and Mining Sciences54, 80-89.
[39]. Nezarat, H., Sereshki, F., & Ataei, M. (2015). Ranking of geological risks in mechanized tunneling by using Fuzzy Analytical Hierarchy Process (FAHP). Tunnelling and underground space technology50, 358-364.
[40]. Norouzi Masir, R., Ataei, M., & Mottahedi, A. (2021). Risk assessment of Flyrock in Surface Mines using a FFTA-MCDM Combination. Journal of Mining and Environment12(1), 191-203.
[41]. Mottahedi, A., Sereshki, F., Ataei, M., Nouri Qarahasanlou, A., & Barabadi, A. (2021). Resilience analysis: A formulation to model risk factors on complex system resilience. International Journal of System Assurance Engineering and Management12(5), 871-883.
[42]. Pack, R. T., Tarboton, D. G., & Goodwin, C. N. (1999). SINMAP 2.0-A stability index approach to terrain stability hazard mapping, user's manual.
[43]. Paulin, G. L., Bursik, M., Lugo-Hubp, J., & Orozco, J. Z. (2010). Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslides by SINMAP and Multiple Logistic Regression landslide models. Physics and Chemistry of the Earth, Parts A/B/C35(3-5), 137-148.
[44]. Prakasam, C., Nagarajan, B., & Kanwar, V. S. (2020). Site-specific geological and geotechnical investigation of a debris landslide along unstable road cut slopes in the Himalayan region, India. Geomatics, Natural Hazards and Risk11(1), 1827-1848.
[45]. Purbo-Hadiwidjojo, M. M. (1971). Peta Geologi: Lembar, BALI. Volcanological Observation Post.
[46]. Qian, Z. H., Zou, J. F., & Pan, Q. J. (2021). 3D discretized rotational failure mechanism for slope stability analysis. International Journal of Geomechanics21(11), 04021210.
[47]. Roshan, P., & Pal, S. (2023). Structural challenges for seismic stability of buildings in hilly areas. Environmental Science and Pollution Research30(44), 99100-99126.
[48]. Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., & Peruccacci, S. (2010). Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology114(3), 129-142.
[49]. Santi, P. M. (2006). Field methods for characterizing weak rock for engineering. Environmental & Engineering Geoscience12(1), 1-11.
[50]. Sarfaraz, H. (2021). An analytical solution for analysis of block toppling failure using approach of fictitious horizontal acceleration. Journal of Mining Science57, 202-209.
[51]. Sarfaraz, H. (2020). A simple theoretical approach for analysis of slide-toe-toppling failure. Journal of Central South University27(9), 2745-2753.
[52]. Sarkar, K., Singh, T. N., & Verma, A. K. (2012). A numerical simulation of landslide-prone slope in Himalayan region—a case study. Arabian Journal of Geosciences5, 73-81.
[53]. Sinarta, I. N., Rifa’i, A., Fathani, T. F., & Wilopo, W. (2016). Geotechnical properties and geologi age on characteristics of landslides hazards of volcanic soils in Bali, Indonesia. GEOMATE Journal11(26), 2595-2599.
[54]. Singh, C. D., Kohli, A., & Kumar, P. (2014). Comparison of results of BIS and GSI guidelines on macrolevel landslide hazard zonation—A case study along highway from Bhalukpong to Bomdila, West Kameng district, Arunachal Pradesh. Journal of the Geological Society of India83, 688-696.
[55]. Singh, P., Bardhan, A., Han, F., Samui, P., & Zhang, W. (2023). A critical review of conventional and soft computing methods for slope stability analysis. Modeling Earth Systems and Environment9(1), 1-17.
[56]. Taiwo, B. O., Yewuhalashet, F., Ogunyemi, O. B., Babatuyi, V. A., Okobe, E. I., & Orhu, E. A. (2023). Quarry slope stability assessment methods with blast induced effect monitoring in Akoko Edo, Nigeria. Geotechnical and Geological Engineering41(4), 2553-2571.
[57]. Thomas, J., Gupta, M., Srivastava, P. K., & Petropoulos, G. P. (2023). Assessment of a dynamic physically based slope stability model to evaluate timing and distribution of rainfall-induced shallow landslides. ISPRS International Journal of Geo-Information12(3), 105.
[58]. UNIVERSO, E. (15). juillet 2016,«Nuevo cálculo de reservas de crudo en el campo ITT»[URL: http://www. eluniverso. com/noticias/2016/07/15/nota/5690454/nuevo-calculo-reservas-crudo-campoitt] 2. Acteurs identifiés Mouvements indigènes et paysans CONAIE CONFENAIE Sarayaku AMARU Shuar Asamblea de pueblos del sur.
[59]. Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural hazards30, 399-419.
[60]. Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult?. Bulletin of Engineering geology and the Environment65, 167-184.
[61]. Huabin, W., Gangjun, L., Weiya, X., & Gonghui, W. (2005). GIS-based landslide hazard assessment: an overview. Progress in Physical geography29(4), 548-567.
[62]. Wijesinghe, D. R., Dyson, A., You, G., Khandelwal, M., Song, C., & Ooi, E. T. (2022). Development of the scaled boundary finite element method for image-based slope stability analysis. Computers and Geotechnics143, 104586.
[63]. Zhang, P., Liu, L. L., Zhang, S. H., Cheng, Y. M., & Wang, B. (2022). Material point method-based two-dimensional cohesive-frictional slope stability analysis charts considering depth coefficient effect. Bulletin of Engineering Geology and the Environment81(5), 206.
[64]. Zhang, P., Liu, L. L., Zhang, S. H., Cheng, Y. M., & Wang, B. (2022). Material point method-based two-dimensional cohesive-frictional slope stability analysis charts considering depth coefficient effect. Bulletin of Engineering Geology and the Environment81(5), 206.
[65]. Zheng, D., Frost, J. D., Huang, R. Q., & Liu, F. Z. (2015). Failure process and modes of rockfall induced by underground mining: A case study of Kaiyang Phosphorite Mine rockfalls. Engineering Geology197, 145-157.
[66]. Zulfahmi, Z., Sarah, D., Novico, F., & Susilo, R. B. (2023). Assessment of Rock Slope Stability in a Humid Tropical Region: Case Study of a Coal Mine in South Kalimantan, Indonesia. Rudarsko-geološko-naftni zbornik38(2), 109-125.
[67]. Oh, S., & Lu, N. (2015). Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes. Engineering Geology184, 96-103.