[1]. Madani, A. (2001). Geological studies and remote sensing applications on Wadi Natash volcanic, Eastern Desert, Egypt. PhD thesis, Faculty of Science, Cairo University.
[2]. Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev., 32,275-290.
[3]. Madani, A. (2009). Utilization of landsat ETM+ data for mapping gossans and iron rich zones exposed at Bahrah Area, Western Arabian Shield, Saudi Arabia. JKAU Earth Sci 20(1), 35–49.
[4]. Madani, A., & Emam, A. (2011). SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, South Eastern Desert, Egypt. Arab J Geosci 4, 45–52.
[5]. Nouri, R., Jafari, MR., Arian, F., & Feizi, F. (2012). Hydrothermal alteration zone identification based on remote sensing data in the Mahn Area, West of Qazvin Province Iran. World Acad Sci Eng Technol, 67, 479-482.
[6]. Madani, A., & Harbi, H. (2012). Spectroscopy of the mineralized tonalite–diorite intrusions, Bulghah gold mine area, Saudi Arabia: effects of opaques and alteration products on FieldSpec data. Ore Geol Rev 44,148–157.
[7]. Harbi, H., & Madani, A. (2013). Utilization of SPOT 5 data for mapping gold mineralized diorite–tonalite intrusion, Bulghah gold mine area, Saudi Arabia. Arab J Geosci,.
[8]. Tayebi, MH., Hashemi, TM., & Keller, VR. (2014). Alteration mineral mapping with ASTER data by integration of coded spectral ratio imaging and SOM neural network model. Turkish J. Earth Sci., 23, 627-644,
[9]. Madani, A. (2015). Spectroscopy of olivine basalts using FieldSpec and ASTER data: a case study from Wadi Natash volcanic field, South Eastern Desert, Egypt. J Earth Syst Sci 124(7), 1475–1486.
[10]. Sadiya, TB., Halilu, AS., Asmah, TF., Agu, NV., Nsofor, CJ., Sanusi, M., Aliyu, I., & Ibrahim, I. (2015). Hydrothermal alteration mapping in Ijio, Oyo state, Nigeria using satellite imagery & remote sensing technique. SSRG Int. J. Geo Inform. Geolog. Sci. (SSRG-IJGGS), 2, 2.
[11]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences 59,556–572.
[12]. Rajendran, S., & Nasir, S. (2017). Characterization of STER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews 88, 317–335.
[13]. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., & Jafari, MR. (2019). Determination of hydrothermal alteration zones using remote sensing methods in Tirka Area, Toroud, NE Iran. J. Indian Soc. Remote Sens., 47(11), 1817-1830.
[14]. Traore, M., Takodjou, Wambo, JD., Ndepete, CP., Tekin, S., Pour, AB., & Muslim, AM. (2020). Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 Operational Land Imager (OLI) data. J. Afr. Earth Sci. p.170.
[15]. Shi, X., Al-Arifi, N., Abdelkareem, M., & Abdalla, F. (2020). Application of remote sensing and GIS techniques for exploring potential areas of hydrothermal mineralization in the central Eastern Desert of Egypt. J. Taibah Univ. Sci. 14, 1421–1432.
[16]. Sekandari, M., Masoumi, I., Pour, AB., Muslim, AM., Rahmani, O., Hashim, M., Zoheir, B., Pradhan, B., Misra, A., & Aminpour, SM. (2020). Application of Landsat-8, Sentinel-2, ASTER andWorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 12, 1239.
[17]. El Sobky, MA., Madani, AA., & Surour, AA. (2020). Spectral characterization of the Batuga granite pluton, South Eastern Desert, Egypt: influence of lithological and mineralogical variation on ASD Terraspec data. Arabian Journal of Geosciences 13, 1246.
[18]. Sadek, MF., El-Kalioubi, BA., Ali-Bik, MW., El Hefnawi, MA., & Elnazer, AA. (2020). Utilizing Landsat-8 and ASTER data in geologic mapping of hyper-arid mountainous region: case of Gabal Batoga area, South Eastern Desert of Egypt. Environ Earth Sci 79(5), 1–14.
[19]. El-Din, GM., El-Noby, ME., Abdelkareem, ZM., & Hamimi, Z. (2021). Using multispectral and radar remote sensing data for geological investigation, Qena-Safaga Shear Zone, Eastern Desert, Egypt. Arab. J. Geosci. 14, 997.
[20]. Madani, AA., Harbi, HM., El-Dougdoug, AA., Surour, AA., & Ahmed, AH. (2021).
Spectral Characteristics of Listvenites and Serpentineites Along Ophiolite-Decorated Megashears (Suture Zones) in the Arabian Shield Using ASD Fieldspec and Satellite Data in:Hamimi (ed) The Geology of the Arabian-Nubian Shield, Springer, Cham, 559-583.
[21]. Ige, O., Tende, A., Bale, R., Gajere, J., & Aminu, M. (2022). Spatial mapping of hydrothermal alterations and structural features for gold and cassiterite exploration.
Scientific African Volume 17, September 2022, e01307.
[22]. Abd El-Fatah, A., Madani, A., Surour, A., & Azer, M. (2023). Integration of Landsat-8 and Reflectance Spectroscopy data for Mapping of Late Neoproterozoic Igneous Ring Complexes in an Arid Environment: a Case Study of Gebel El-Bakriyah Area, Eastern Desert, Egypt. Journal of Mining and Environment (JME).
[23]. Ali, D., & Frimpong, S. (2020). Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artif. Intell. Rev. 53, 6025–6042.
[24]. Brown, WM., Gedeon, TD., Groves, D., & Barnes, RG. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences 47, 757–770.
[25]. Carranza, EJ. (2014). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research 24, 291–304.
[26]. Porwal, A., Carranza, EJ., Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, western India. Nat Resour Res 12, 155–171.
[27]. Fung, CC., Iyer, V., Brown, W., & Wong, KW. (2005). Comparing the performance of different neural networks architectures for the prediction of mineral prospectivity. In Proceedings of the fourth international conference on machine learning and cybernetics, Guangzhou 394–398.
[28]. Abedi, M., Norouzi, GH., & Bahroudi, A. (2012). Support vector machine for multi- classification of mineral prospectivity areas. Computers Geosciences 46, 272–283.
[29]. Rodriguez-Galiano, VF., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int J Geogr Inf Sci 28, 1336–1354.
[30]. Carranza, EJ., & Laborte, AG. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences 74, 60–70.
[31]. Zhang, Z., Zuo, R., & Xiong, Y. (2015). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type fe deposits in the southwestern Fujian metallogenic belt, China. Sci China Earth Sci 59, 556–572.
[32]. Carranza, EJ., & Laborte, AG. (2016). Data-driven predictive modeling of mineral prospectivity using random forest: a case study in Catanduanes Island (Philippines). Natural Resources Research 25, 35-50.
[33]. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71, 804–818.
[34]. McKay, G., & Harris, JR. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research 25, 125–143.
[35]. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences 59, 556–572.
[36]. Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfieldterrains using sparse deposit data: An example from the Tanami Region,Western Australia. Nat Resour Res 26, 489–507.
[37]. Wang,Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ 666, 975–993.
[38]. Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geol Rev 109, 26–49.
[39]. Chen, C., He, B., & Zeng, Z. (2014). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: a case study in the eastern Kunlun Mountains, China. Earth Science Informatics 7, 13–24.
[40]. Sun, T., Hui, Li., Kaixing, Wu., Fei Chen, Zhong Zhu, & Zijuan Hu (2020). Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals, 10(2),102.
[41]. Jooshaki, M., Nad, A., & Michaux, S. (2021). A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry. Minerals 11, 816.
[42]. Li, S., Chen, J., & Liu, C. (2022). Overview on the Development of Intelligent Methods for Mineral Resource Prediction under the Background of Geological Big Data. Minerals 12, 616.
[43]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B., (2022). Combination of machine learning algorithms with concentration-area fractal method for soil geochemical anomaly detection in sediment-hosted Irankuh Pb-Zn deposit, Central Iran. Minerals 12(6), 689.
[44]. Afzal, P., Farhadi, S., Konari, MB., Meigooni, MS., & Saein, LD., (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. Geopersia 12(1), 191-199.
[45]. Farhadi, S., Tatullo, S., Konari, MB., & Afzal, P., (2024). Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping. Journal of Geochemical Exploration 260, 107441.
[46]. Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modelling with GIS. Oxford:Pergamon Press.
[47]. Carranza, EJ., Mangaoang, JC., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research 8, 165–173.
[48]. Singer, DA., & Kouda, R. (1999). A Comparison of the weights of evidence method and probabilistic neural networks. Natural Resources Research 8, 87–298.
[49]. Asadi, HH., & Hale, M. (2001). A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Comput Geosci 27, 901–912.
[51]. Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Nat Res Res 12, 241-255.
[52]. Carranza, EJ., Woldai, T., & Chikambwe, EM. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research 14, 47–63.
[53]. Caumon, GJ., Ortiz, O., & Rabeau, (2006). A comparative study of three data-driven Mineral Potential Mapping techniques. Int. Assoc. for Mathematical Geology XIth International Congress Université de Liège – Belgium Liège – September, 3rd - 8th S13-05.
[54]. Carranza, EJ., van Ruitenbeek, FJ., Hecker, C., van der Meijde, M., & van der Meer, FD. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int J Appl Earth Obs 10, 374–387.
[55]. Partington, G. (2010). Developing models using GIS to assess geological and economic risk: An example from VMS copper gold mineral exploration in Oman. Ore Geology Reviews 38, 197–207.
[56]. Madani, A. (2011). Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. Egypt J Remote Sensing and Space Sci 14:91–97.
[57]. Joly, A., Porwal, A., & McCuaig, TC. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews 48, 349–383.
[58]. Ford, A., Miller, JM., & Mol, AG. (2015). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research 25, 19–33.
[59]. Carranza, EJ., & Laborte, AG. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forest algorithm. Ore Geology Reviews 71, 777–787.
[61]. Sun, T., Wu, K., Chen, L., Liu, W., Wang, Y., & Zhang, C. (2017). Joint application of fractal analysis and weights-of-evidence method for revealing the geological controls on regional-scale tungsten mineralization in southern Jiangxi Province, China. Minerals 7, 243.
[62]. Olasehinde, A., & Ashano, E. (2021). Data Driven Predictive Modelling of Mineral Prospectivity Using Principal Component Analysis: A Case Study of Riruwai Complex. Advances in Applied Science Research 12(7), 33.
[64]. Taha, AM., Xi, Y., He, Q., Hu, A., Wang, S., & Liu, X. (2023), Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan. Minerals 13, 49.
[65]. Chevremont, P., & Johan, Z., (1981). Wadi Khamal-Wadi Murattijah Ultramafic-Mafic Layered Complex, Saudi Arabian. Deputy Ministry for Mineral Resources: Open File Report BRGMOF-01,36, 143.
[66]. Harbi, HM. (2008). Geology and Lithostratigraphy of the Ultramafic-Mafic Rocks and Associated Mineralizations, Wadi Khamal Area, West-Central Arabian Shield. JKAU: Earth Sci 19, 119-157.
[67]. Bache, J., & Chevermont, P. (1976). Mineral Investigations for Nickel and Copper in the Wadi Khamal Region: Bureau de Recherches Geologiques et Minieres, Open-File-Report-JED-OR-79(8),37.
[68]. Pellaton, C. (1979). Geologic Map of the Yanbu Al Bahr Quadrangle, Sheet 24C, Kingdom of Saudi Arabia, Saudi Dir. Gen. Miner. Resour. Geologic Map GM-48-A, 16.
[69]. Hashem, WB. (1981). The Geology of the Wadi Khamal Basic Layered Intrusion, Yanbou Al Bahr, Saudi Arabia, Unpublished Ph.D. Thesis, University of Bristol UK.
[70]. Al Ghamdi, AM. (1994). Mineralization and Associated Platinum Group Elements in mafic-ultramafic rocks, Northwestern Arabian Shield, K.S.A: Unpublished Ph.D. Thesis, King Abdulaziz University, Faculty of Earth Sciences.
[71]. Eldougdoug, A., Abd El-Rahman, Y., & Harbi, H. (2020). The Ediacaran Post-Collisional Khamal Gabbro-Anorthosite Complex from the Arabian Shield and Its Fe-Ti-P Ore: An Analogy to Proterozoic Massif-Type Anorthosites. Lithos 372–373, 105674.
[72]. Abuamarah, B A., Alshehri, F., Azer, MK., & Asimow, PD. (2023). Loveringite from the Khamal Layered Mafic Intrusion: The First Occurrence in the Arabian Shield, Northwest Saudi Arabia. Minerals 13,172.
[73]. Galaup, M., & Dupuy, S. (2003). Benefits of SPOT 5 imagery for town planning with new adapted processing techniques. Proceedings of IGARSS 2003, IEEE International Geoscience and Remote Sensing symposium.
[74]. Clandillon, S., Yesou, H., & Meyer, C. (2003). Benefits of SPOT 5 HR and VHR data for forest management and windfall damage mapping. Proceedings of IGARSS, IEEE International Geoscience and Remote Sensing symposium.
[75]. Yésou, H, Clandillon, S., Allenbach, B., Bestault, C., De Fraipont, P., Inglada, J., & Favard, C. (2003). A constellation of advantages with SPOT SWIR and VHR SPOT 5 data for flood extent mapping during the September 2002 Gard event (France). Proceedings of IGARSS 2003, IEEE International Geoscience and Remote Sensing symposium.
[76]. Kakiuchi, H., Onaka, M., Asai, M., & Itoh, F. (2004). Topographic mapping at scale of 1:25,000 using SPOT 5 satellite imagery. ISPRS 2004, Istanbul, Turkey.
[77]. Ferreira, F. (2004). Using SPOT 5 to improve census cartography. ISPRS, Istanbul, Turkey.
[78]. Retière, A., Senegas, O., Parriaux, A., Haeberlin, Y., & Turberg, P. (2004). Validation of SPOT 5 satellite imagery for geological hazard identification and risk assessment for landslides, mud- and debris flows in Matagalpa, Nicaragua. ISPRS 2004, Istanbul, Turkey.
[79]. Fajji, NG., Palamuleni, LG., & Mlambo, V. (2018). Application of SPOT Imagery for Landcover Mapping and Assessing Indicators of Erosion and Proportion of Bareground in Arid and Semi-arid Environment. J Remote Sens GIS 7, 240.
[80]. Breiman, L. (2001). Random forests. Machine learning 45, 5-32.
[81]. Madani, A., & Niyazi, B. (2023). Groundwater Potential Mapping Using Remote Sensing and Random Forest Machine Learning Model: A Case Study from Lower Part of Wadi Yalamlam,Western Saudi Arabia. Sustainability 2023, 15, 2772.
[82]. O’Brien, JJ., Spry, PG., Nettleton, D., Xu, R., & Teale, GS. (2015). Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. J Geochem Explor 149, 74–86.
[83]. Long, T., Zhou, Z., Hancke, G., Bai, Y., & Gao, Q. (2022). A Review of Artificial Intelligence Technologies in Mineral Identification: Classification and Visualization. J. Sens. Actuator Netw. 2022, 11, 50.
[84]. Davis, J., & Goadrich, M., (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning. 233–240.
[85]. Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 10(3): e0118432.
[86]. Fawcett, T. (2005). An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874.