Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Urmia University of Technology, Urmia, Iran

2 Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

In recent years, hyperspectral data have been widely used in earth sciences because these data provide accurate spectral information of the earth's surface. This research aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping alteration mineral in the Astarghan area, NW Iran. Astarghan is located in the northwest of Iran where deposits of low-sulfide gold-bearing ore rocks occur as veins and stockworks. Therefore, at first, the Astarghan Hyperion scene was topographically and atmospherically corrected. Then, the data quality was surveyed to recognize bad bands and improve the accuracy of the subsequent processing steps. In MF analysis, it is a challenge to separate MF abundance images to target and background pixels. Therefore, to cope with this challenge, a moving threshold technique is proposed. The results indicated three indicative minerals including kaolinite, opal and jarosite. Then, the results were statistically verified by virtual verification and geological data. The verification was performed virtually using United States Geological Survey (USGS) spectral library data, which showed an agreement of 78.06%. Moreover, a comparison of the MF analysis results showed a good agreement with field investigations and overlaying with a detailed geological map of the study area. Finally, in this study the X-ray diffraction (XRD) of three indicative mineral samples was used to check the efficiency of the applied method. 

Keywords

Main Subjects

[1]. Poormirzaee, R. & Oskouei, M.M. (2010). Use of spectral analysis for detection of alterations in ETM data, Yazd, Iran. Appl Geomat, 2, 147–154.
[2]. Saed, S, Azizi, H., Daneshvar, N., Afzal, P., Whattam, S.A. & Mohammad, Y.O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International, 37(26), 11456-11482.
[3]. Pourgholam, M. M., Afzal, P., Adib, A., Rahbar, K., & Gholinejad, M. (2022). Delineation of Iron alteration zones using spectrum-area fractal model and TOPSIS decision-making method in Tarom Metallogenic Zone, NW Iran. Journal of Mining and Environment13(2), 503-525.
[4]. Gersman, R., Ben-Dor, E., Beyth, M., Avigad, D., Abraha, M. & Kibreba, A. (2008). Mapping Of hydrothermally altered rocks by the EO-1 Hyperrion sensor, northern Danakil, Eritrea. Int. J. Remote Sens., 29(13), 3911–3936.
[5]. Goetz, A.F.H. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113 (1).
[6]. Kruse, F.A. (2003). Mineral mapping with AVIRIS and EO-1 Hyperion. Presented at the 12th JPL Airborne Geoscience Workshop, Pasadena, California.
[7]. SrinivasaPerumal, P., Shanmugam, S. & Ganapathi, P. (2020). Satellite imagery and spectral matching for improved estimation of calcium carbonate and iron oxide abundance in mine areas. Arabian Journal of Geosciences, 13(18), 1-13.
[8]. Oskouei, M.M. & Babakan, S. (2016). Detection of alteration minerals using Hyperion data analysis in Lahroud. Journal of the Indian society of remote sensing, 44(5), 713-721.
[9]. Cudahy, T.J., Hewson, R., Huntington, J.F., Quigley, M.A. & Barry, P.S. (2001). The performance of the satellite-borne Hyperion hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton, South Aust. IEEE IGARSS proc. pp: 9–13.
[10]. Pour, B.A., Hashim, M. & Marghany, M. (2011). Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int J Physical Sci., 6(4), 917–929.
[11]. Ekanayake, E. M. M. B., Vithana, S. S. P., Ekanayake, E. M. H. E. B., Rathnayake, A. R. M. A. N., Abeysekara, A. M. R., Oorloff, T. S. J., ... & Senaratne, A. (2019). Mapping ilmenite deposit in Pulmudai, Sri Lanka using a hyperspectral imaging-based surface mineral mapping method. Journal of the National Science Foundation of Sri Lanka, 47(3), 271-284.
[12]. Vignesh, K. & Kiran, Y. (2020). Comparative analysis of mineral mapping for hyperspectral and multispectral imagery. Arabian Journal of Geosciences, 13(4), 1-12.
[13]. Bi, X., Miao, F. & Ye, C. (2012). Lithology identification and mapping by hyperion hyperspectral remote sensing. Comput Tech Geophys Geochem Explor, 34, 599-603.
[14]. Wang, J., Zhou, G., Zhang, Y., Bussink, C., Zhang, J. & Ge, H. (2016). An unsupervised mixture-tuned matched filtering-based method for the remote sensing of opium poppy fields using EO-1 Hyperion data: An example from Helmand, Afghanistan. Remote Sensing Letters, 7(10), 945-954.
[15]. Govil, H., Gill, N., Rajendran, S., Santosh, M. & Kumar, S. (2018). Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geology Reviews, 92, 271-283.
[16]. Khatun, M., Sharma, R.U. & Chattoraj, S.L. (2019). Mineralogical mapping using field and image based spectra in parts of Delhi-Aravalli Fold Belt, Rajasthan, India. International Journal of Economic and Environmental Geology, 8-14.
[17]. Pan, Z., Liu, J., Ma, L., Chen, F., Zhu, G., Qin, F. & Wang, J. (2019). Research on hyperspectral identification of altered minerals in Yemaquan West Gold Field, Xinjiang. Sustainability, 11(2), 428.
[18]. Boardman, J.W. (1998). Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. In: Summaries of the Seventh Annual JPL Airborne Geoscience Workshop, Pasadena, CA, pp. 55.
[19]. Molan, Y.E., Refahi, D. & Tarashti, A.H. (2014). Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 27, 117–127.
[20]. Ferdowsi, R., Calagari, A.A., Houseinzadeh, M.R. & Seyahcheshm, K. (2016). Studies of alteration zones of Astarghan area based on spectral behaviour of alteration minerals, mineralogy and Fluid Inclusions signatures, Kharvana, East- Azarbidjan. 34th national geosciences symposium, Tehran, Iran.
[21]. Ferdowsi, R., Calagari, A.A., Simmonds, V. & Miranvari, A. (2021). Evolution of the gold (copper) mineralization in the porphyry stock and the related skarn zones and epithermal veins in the Astarghan area, NW Iran: Evidence from fluid inclusion, mineral chemistry and sulfur isotope analyses. Ore Geology Reviews, 136, 104196.
[22]. Mehrpartov, M. (1997). 1:100000 Geological Map and geological report of Siahrood. Geological survey of Iran (GSI).
[23]. Hosseinjanizadeh, M., Tangestani, M.H., Roldan, F.V. & Yusta, I. (2014). Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Advances in Space Research, 53 (3), 440-451.
[24]. Barry, P.S. (2001). [EO-1/ Hyperion Science Data User’s Guide, Level 1_B], TRW Space, Defense & Information Systems, Redondo Beach, CA.
[25].Bindschadler, R. & Choi, H. (2003). Characterizing and correcting Hyperion detectors using ice-sheet images. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1189-1193.
[26]. Scheffler, D. & Karrasch, P. (2013). Preprocessing of Hyperspectral Images-a Comparative Study of Destriping Algorithms for EO-1 Hyperion. Image and Signal Processing for Remote Sensing, edited by Lorenzo Bruzzone, Proc. of SPIE Vol. 8892, 88920.
[27]. Pande-Chhetri, R. & Abd-Elrahman, A. (2012). Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping. Int. J. of Remote Sensing 34(6), 2216-2235.
[28]. RSI, 2000. ENVI User’s Guide, the Environment for Visualizing Images, Version 3.2. Research Systems, 2995 Wilderness Place, Boulder, CO 80301, USA.
[29]. Oskouei, M.M. & Babakan, S. (2016). Role of smile correction in mineral detection on hyperion data. Journal of Mining & Environment, 7(2), 261-272.
[30]. Goodenough, D.G., Dyk, A., Niemann, K.O., Pearlman, J.S., Hao, C., Tian, H., Murdoch, M. & West, C. (2003). Processing Hyperion and Ali for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1321-1331.
[31]. Fuyi, T., Mohammed, S., Abdullah, K., Lim, H. & Ishola, K., (2013). A comparison of atmospheric correction techniques for environmental applications. IEEE International Conference on Space Science and Communication (IconSpace).
[32]. Poormirzaee, R., & Mohammadi Moskouei, M. (2012). Topographic correction of hyperspectral data of west east-Azarbayjan. Journal of Mining Engineering7(15), 25-33.
[33]. Riaño, D., Chuvieco, E., Salas, J. & Aguado, I. (2003). Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Transactions on Geoscience and Remote sensing, 41(5), 1056-1061.
[34]. Khurshid, K.S., Staenz, K., Sun, L., Neville, R., White, H.P., Bannari, A., Champagne, C.M. & Hitchcock, R. (2006). Preprocessing of EO-1 Hyperion Data. Canadian Journal of Remote Sensing, 32(2), 84–97.
[35]. Keshbava, N. & Mustard, J.F., (2002). Spectral unmixing. IEEE signal processing magazine. 1053-5888/02/S17.00.
[36]. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P. & Chanussot, J. (2012). Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354-379.
[37]. Dobigeon, N., Altmann, Y., Brun, N. & Moussaoui, S. (2016). Linear and nonlinear unmixing in hyperspectral imaging. Data Handling in Science and Technology: Resolving Spectral Mixtures, 41.
[38]. Boardman, J.W. (1993). Automated spectral unmixing of AVIRIS data using convex geometry concepts. In Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication, 93-26, 1, p. 11-14.
[39].Chang C-I. 2013. Hyperspectral data processing: algorithm design and analysis. John Wiley & Sons.
[40]. Green, A.A., Berman, M., Switzer, B. & Craig, M.D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65 - 74.
[41]. Clark, R.N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz, A.N. (Ed.), Manual of Remote Sensing. Remote Sensing for the Earth Sciences. John Wiley & Sons, New York, pp. 3–58.
[42]. Harsanyi, J.C., Farrand, W.H. & Chang, C.I. (1994). Detection of subpixel signatures in hyperspectral image sequences. Proceedings of 1994 ASPRS Annual Conference, Reno, Nevada, pp 236–247.
[43]. Chang, C-I. (2005). Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis. IEEE transactions on geoscience and remote sensing, 43(3),502-518.
[44]. Schott, J.R. (2007). Remote Sensing, The Image Chain Approach, second ed. Oxford University Press, New York, pp. 688.