Original Research Paper
Mineral Processing
Jiaye Li; Jing Zhao; Zebin Wang; Huan Liu; Qing Wen; Jinling Yin; Ze Li; Yang Lei; Guiling Wang
Abstract
Traditional graphite has safety and environmental issues, associated with fluorine purification. To address these issues, an energy-saving and efficient graphite purification process can be explored through the acid leaching method with composite additives. The acid leaching process was studied and optimized ...
Read More
Traditional graphite has safety and environmental issues, associated with fluorine purification. To address these issues, an energy-saving and efficient graphite purification process can be explored through the acid leaching method with composite additives. The acid leaching process was studied and optimized in detail using the controlled variable method including the effects of the soaking time and temperature on the graphite purification process. Then the response surface method was used to simulate the orthogonal experiment of graphite purification to verify the correctness of the single-factor, experiment. The purity and micromorphology of the graphite samples at each stage were characterized and tested. The experimental results showed that the optimal liquid-to-solid ratio of the acid solution and graphite was 20:1, which could make the fixed carbon content reach 99.77%. On the basis of these optimal process conditions, the addition types were further explored. The experimental result showed that the best addition was ascorbic acid and EDTA, which could reduce the content of various impurities in the graphite raw material without destroying the microstructure of the graphite. Benefitting from the addition of compound additives in the two-step process, almost all the metal ions were leached from the graphite. After the acid and water leaching, the fixed carbon content of graphite could reach 99.96%. The process parameters proposed in this paper were scientifically verified by both the single-factor and multi-factor experiments, and innovative and effective additives were introduced in different steps to make the graphite purity break through 99.9%, which was difficult to reach by the traditional method.
Original Research Paper
Environment
Ayodele Owolabi; Olumuyiwa Temidayo Ogunro; Gbenga Stephen Ayode
Abstract
Sustainable development is one that meets the needs of the current generation without compromising the ability of future generations to meet their own needs. The geospatial approach was used to evaluate the degree of sustainability of the mining operations in Okpella, Nigeria. 2011, 2016, and 2021. Normalized ...
Read More
Sustainable development is one that meets the needs of the current generation without compromising the ability of future generations to meet their own needs. The geospatial approach was used to evaluate the degree of sustainability of the mining operations in Okpella, Nigeria. 2011, 2016, and 2021. Normalized Difference Vegetation Index (NDVI) revealed mean values of 0.36557, 0.32961, and 0.41674, respectively. This vegetation cover of shrubs, grassland, and relatively healthy vegetation remained after the mining activities in the research area. The surface water in the area is under stress due to the anthropogenic activities like mining, which is known to demand large amounts of water for mineral recovery and processing. Additionally, the Normalized Difference Moisture Index (NDMI) revealed that the mean values for the years 2011, 2016, and 2021 were, respectively, 0.01415, -0.32949, and -0.15331. The research area's NDMI showed little water stress. The Soil Moisture Index (SMI) for 2011, 2016, and 2021 indicated a moderate moisture content in the soil (0.73682, 0.58690, and 0.58897, respectively). The Land Surface Temperature (LST) data revealed that the LST levels (from 28.623 oC to 32.525 oC) had been rising. During the three years under study, aquatic bodies had the lowest LST values, whereas bare land and populated regions had the greatest LST values. According to the results of the NDVI, NDMI, and MNDWI investigations, this increase was caused by the intermediate vegetation levels and extremely low surface water. It is necessary to develop an environmental policy to mitigate the negative consequences of mining on land covers.
Review Paper
Exploration
Abdalmajed Milad Shlof; Mohd Hariri Arifin; Muhammad Taqiuddin Zakaria; Emmanuel O. Salufu
Abstract
More than sixty thermal springs have been detected across Peninsular Malaysia, with about 75% conveniently located in easily accessible areas. The potential for thermal energy growth has been recognized at four hot spring localities: Lojing, Dusun Tua, Ulu Slim, and Sungai Klah. This article analyses ...
Read More
More than sixty thermal springs have been detected across Peninsular Malaysia, with about 75% conveniently located in easily accessible areas. The potential for thermal energy growth has been recognized at four hot spring localities: Lojing, Dusun Tua, Ulu Slim, and Sungai Klah. This article analyses Peninsular Malaysia's geothermal development's geological, geochemical, and geophysical research to assess its appropriateness and performance. The geological data provide insights into the structural characteristics and spatial distribution of thermal springs within the studied area. Geochemical studies measure reservoir temperatures, revealing the highest recorded temperature exceeds 189°C. The review shows that the hot springs are derived from a recharge region linked to high-altitude topography, with their source being meteoric water. Several geophysical techniques, such as transient electromagnet (TEM), gravity, land and satellite magnetic, ground penetration radar (GPR), seismic, resistivity, and induced polarization (IP), have been employed to examine the geothermal system in Malaysia. The sole magnetotelluric (MT) investigation at Ulu Slim deviates from this pattern. The source suggests uncertainty regarding accuracy related to station distance, highlighting these concerns. Most studies indicate that magma intrusion is the most likely heat source. To offer a comprehensive understanding of Peninsular Malaysia's geothermal potential, this study reviews previous research and presents a feasible model that incorporates all current facts.
Original Research Paper
Exploration
Mustafa Yasser Elgindy; Ahmed Zakaria Nooh; Ali Mostafa Wahba
Abstract
Kick monitoring, detection, and control are key elements to ensure safe drilling operations and avoid catastrophic blow-out incidents that can cause loss of life, equipment, and environmental damage. Conventional kick detection systems such as the pit volume totalizer and the flow in/out sensors identify ...
Read More
Kick monitoring, detection, and control are key elements to ensure safe drilling operations and avoid catastrophic blow-out incidents that can cause loss of life, equipment, and environmental damage. Conventional kick detection systems such as the pit volume totalizer and the flow in/out sensors identify the kick after a large amount of influx has been recorded on the surface. So, we aim to recognize the kick before it enters the wellbore by detecting the abnormal formation pressure once the bit penetrates the rock. This paper proposes a new machine learning model as an alternative solution using field drilling parameters such as true vertical depth, porosity, bulk density, resistivity, rate of penetration, weight on bit, rotation per minute, torque, standpipe pressure, flow rate, flowline temperature, and gas level. The data-driven models were developed using three separate algorithms: K-Nearest Neighbor, Random Forest, and XG Boost. 6022 field data points were split for training, testing, and validation processes. On average, the model using the random forest algorithm showed the highest accuracy in forecasting the formation pressure, with root mean squared error values and coefficient of determination values of 12.868 and 0.9638, respectively. Streamlit Deployment tool was used to create a user interface program to facilitate the prediction process. The program was tested using 196 field data points and recorded a high accuracy of 95%.
Review Paper
Environment
Aditi Nag; Anurag Singh Rathore
Abstract
The tourism industry is experiencing a profound transformation driven by digital innovations such as virtual reality (VR), augmented reality (AR), and interactive platforms. This paper explores how these technologies are reshaping destination competitiveness, with a specific focus on the mining heritage ...
Read More
The tourism industry is experiencing a profound transformation driven by digital innovations such as virtual reality (VR), augmented reality (AR), and interactive platforms. This paper explores how these technologies are reshaping destination competitiveness, with a specific focus on the mining heritage sites (MHSs). By leveraging VR and AR, heritage sites can offer immersive and interactive experiences that enhance visitor engagement, and broaden their reach. Through a case-study analysis, this work examines successful implementations of digital tourism initiatives at various MHSs including the Big Pit National Coal Museum, the Mining Museum of Slovenia, the Mining Museum of the West, the Erzgebirge Mining Region, and the Mesabi Iron Ore Mines. The findings reveal that digital tools significantly improve accessibility, educational value, and global appeal of these sites. However, challenges such as the technical and financial constraints remain. The paper concludes with recommendations for practitioners on integrating digital technologies effectively and suggestions for future research to explore long-term impacts and emerging trends. This work underscores the transformative potential of digital innovation in enhancing the competitiveness and sustainability of tourism destinations.
Original Research Paper
Exploitation
Sruti Narwal; Debasis Deb; Sreenivasa Rao Islavath; Gopinath Samanta
Abstract
A novel underground mining method is proposed to extract friable chromite ore bodies in weak and weathered limonitic host rock below an open-pit mine. The conventional underground methods do not instil confidence since GSI (Geological Strength Index) of ore bodies and host rock lies below 35. Series ...
Read More
A novel underground mining method is proposed to extract friable chromite ore bodies in weak and weathered limonitic host rock below an open-pit mine. The conventional underground methods do not instil confidence since GSI (Geological Strength Index) of ore bodies and host rock lies below 35. Series of dimensions of transverse stopes along the strike are suggested based on a detailed analysis of multiple mining and backfilling operations by simulating 36 three-dimensional numerical models. For each operation or sequence, a strength-based “Mining Sequence Factor (MSF)” is devised that helps quantifying its equivalent strength compared to in-situ conditions. This factor along with the average equivalent plastic strain (AEPS) developed on the pillars as obtained from numerical models is used to determine the safe operations with desired yearly production target. The paper provides an in-depth analysis of this method and suggests minimum pillar dimensions of 40 m, whether in-situ or backfilled. The paper, in addition, lays the design of underground drives and their support system as per NGI (Norwegian Geotechnical Institute) guidelines and 3D numerical studies, the performance of which is analysed considering distribution of stress and equivalent plastic strain.
Original Research Paper
Mineral Processing
Ahmed Mohammedelmubarak Ah Abbaker; Nevzat Aslan
Abstract
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), ...
Read More
This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), the cationic environment, and various operational parameters. A systematic approach utilizing factorial and Box-Behnken experimental designs was employed to evaluate the effects of the multiple variables. These variables included the dodecylamine (DDA) concentration, methyl isobutyl carbinol (MIBC) concentration, impeller speed, pulp density, the addition of fine particles, and the presence of microbubbles. The DDA concentration and the impeller speed significantly impacted the coarse particle recovery, while microbubbles increased recovery by 15% under non-optimized conditions; optimization revealed a more negligible difference. The optimized conditions achieved maximum recoveries of 99.47% and 97.88% with and without microbubbles, respectively, indicating the minimal effect when other parameters were optimized. This research work shows that a careful optimization of the flotation parameters can achieve high coarse particle recovery rates, with microbubbles playing a less significant role than anticipated. These findings suggest that optimizing the conventional parameters may be more crucial than the microbubble introduction for enhancing the flotation efficiency of larger particles. The work contributes to our understanding of coarse particle flotation, and provides insights for improving the mineral processing techniques for challenging the particle sizes.
Review Paper
Environment
Salil Seth; Mrinal Kanti Mahato; Mohd Irfan Pathan; Lokesh Tomar; Parveen Yadav
Abstract
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan ...
Read More
This paper explores the role of eco-centric financing in promoting sustainable development and addressing environmental challenges in mine cities. Through qualitative analysis of the case studies from the Pilbara region in Australia, the Visakhapatnam-Chennai Industrial Corridor in India, and the Kapan Mining Complex in Armenia, the work highlights the multifaceted nature of eco-centric financing, and its implications for various stakeholders, including local governments, mining companies, and communities. The findings reveal that eco-centric financing is essential for enhancing climate resilience, fostering sustainable mining practices, and generating socio-economic benefits. However, significant barriers hinder its effective implementation including inadequate regulatory frameworks, limited access to financial resources, and social mistrust among stakeholders. The paper identifies key opportunities for improvement such as strengthening policy frameworks, enhancing stakeholder engagement, and integrating technology and innovation into financing initiatives. Ultimately, this study underscores the importance of a holistic and inclusive approach to eco-centric financing, emphasizing the need for collaboration and transparency to ensure equitable and sustainable outcomes in mine cities.
Original Research Paper
Mineral Processing
Ashraf Alsafasfeh; Anum Razzaq; Abeer Sajid; Maryam Nazir; Muhammad Badar Hayat; Mirza Zaid
Abstract
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and ...
Read More
Palygorskite (PAL), also known as attapulgite, is a clay mineral prized for its nanorod-like silicate structure and fibrous morphology. The traditional PAL purification methods often involve wet gravity separation techniques such as sedimentation and screening, which require significant water usage and pose sustainability challenges, especially in the water-scarce regions. This work introduces a novel, environmentally sustainable dry beneficiation method for PAL. A large PAL sample with 41.7% content and 10% moisture was crushed, ground using a pin mill, and classified into three particle size fractions:-0.088 mm + 0.066 mm, -0.066mm +0.044 mm, and -0.044 mm. These fractions were treated with an air classifier. A Box-Behnken experimental design was employed to investigate the effects of particle size, shutter opening, and motor speed on the classification efficiency. The optimal parameters for grade were 400 rpm motor speed, shutter opening of 1 mm, and feed size of -0.066 mm + 0.044 mm. For the recovery, the optimal conditions were 1200 rpm motor speed, shutter opening of 2.5 mm, and feed size of -0.044 mm. The most favorable balance of grade (67.8%) and recovery (53.2%) was achieved with a motor speed of 1200 rpm, shutter opening of 4 mm, and feed size of -0.066 mm + 0.044 mm. The work concludes that air classification significantly enhances the PAL beneficiation process, with a 50% increase in grade, and recommends exploring the low shear grinding techniques for further improvement.
Original Research Paper
Rock Mechanics
RADHA TOMAR; SMITA TUNG
Abstract
Slope failures are prevalent issue in the construction sector. Thus the engineers must use appropriate slope stabilization techniques to reduce the risk of human life and property. This work investigates the efficacy of multiple regression analysis in predicting slope stability, specifically focusing ...
Read More
Slope failures are prevalent issue in the construction sector. Thus the engineers must use appropriate slope stabilization techniques to reduce the risk of human life and property. This work investigates the efficacy of multiple regression analysis in predicting slope stability, specifically focusing on the slopes in the Kullu district, Himachal Pradesh, India. A total of 160 cases with different parameters were analyzed by using the well-known Limit Equilibrium Method (LEM), Morgenstern and Price on PLAXIS LE. Numerical analysis was performed using different nail lengths (6 m, 8 m, 10 m, and 12 m) and nail inclinations (0°, 5°, 10°, 15°, 20°, 25°, 30°, and 35°), applied to a homogeneous soil slope with 45°, 50°, 60°, and 70° inclinations, respectively. The limit equilibrium analysis may not offer predictive capabilities for future scenarios directly. In contrast, Multiple Regressions (MR) can provide predictive insights based on the historical data, allowing for forecasting of stability under different conditions or design scenarios. The utilization of MR provides the coefficients that quantify the influence of each variable on slope stability, enabling a detailed understanding of how each factor contributes. To develop the prediction models using Multiple Regression Analysis (MRA), the factor of safety values obtained by the numerical method were used. The accuracy of this model was evaluated against the conventional LE methods. The results indicate that multiple regression provides a good predictive performance with an R2 value equal to 0.774, offering a more nuanced and accurate assessment of slope stability compared to the traditional LE techniques.
Original Research Paper
Exploitation
Javad Lotfi Godarzi; Ahmad Reza Sayadi; Amin Mousavi; Micah Nehring
Abstract
The production rate and cut-off grade are two critical variables in the design and planning of open-pit mines. Generally, the production rate depends on the reserve amount, which is influenced by the cut-off grade. Additionally, the cut-off grade is affected by the production cost, which is influenced ...
Read More
The production rate and cut-off grade are two critical variables in the design and planning of open-pit mines. Generally, the production rate depends on the reserve amount, which is influenced by the cut-off grade. Additionally, the cut-off grade is affected by the production cost, which is influenced by the production rate and product price. A conventional approach optimizes each variable individually, and neglects the trade-off between production rate and cut-off grade, leading to a sub-optimal solution. This work aimed to address the simultaneous optimization of the production rate and cut-off grade and provided a novel solution for this problem. In this context, a non-linear mathematical model was developed. The Particle Swarm Optimization (PSO) algorithm was used due to the model's non-linear nature and the continuous decision variables. Implementing the model for a typical copper mine showed that the suggested model resulted in a concurrent optimization of production rate and cut-off grade. The maximum NPV of 1.153 billion dollars occurred at a production rate of 15.66 Mt/y, and a cut-off grade of 0.64%. Additionally, a sensitivity analysis was conducted for key factors such as product price, discount rate, and maximum capital cost.
Original Research Paper
Rock Mechanics
Hamed Farajollahi; Mohammad Mohammadi; Mohammad Hossein Khosravi
Abstract
A better understanding of rock mass behavior is an essential part of the design and construction of underground structures. Any improvement in the understanding of the behavior of rock mass will facilitate the improvement of the design in terms of the safety of the working environment, long-term safety ...
Read More
A better understanding of rock mass behavior is an essential part of the design and construction of underground structures. Any improvement in the understanding of the behavior of rock mass will facilitate the improvement of the design in terms of the safety of the working environment, long-term safety of the structure, environmental effects, and sound management of public or private resources. Thus, in step one in this paper the experience gained from the application of the GDE (Geo Data Engineering) multiple graph approach for rock mass classification and assessment of its behavior through the course of excavation of the Alborz tunnel is presented. The predicted hazards are compared with the experienced problems and suggestions are given to be considered in future works of tunnel construction. In step two, the GDE multiple graph approach is compared to the rock mass behavior types proposed by Palmstrom & Stille (2007) in terms of the continuity of rock mass. The result of this comparison together with the data obtained from rock mass classification in the Alborz tunnel are used to develop a system that determines the applicability of the rock bolt supporting factor (RSF) in different rock mass behavior classes.
Original Research Paper
Rock Mechanics
Mohammad Rezaei; Seyed Zanyar Seyed Mousavi; Kamran Esmaeili
Abstract
This study introduces a novel approach, known as Hybrid Probabilistic Slope Stability Analysis (HPSSA), tailored for Mine 4 of the Gol-E-Gohar iron complex in Iran. The mine walls are first divided into 8 separate structural zones, including A-A' to H-H' sections for slope stability analysis. Then, sufficient ...
Read More
This study introduces a novel approach, known as Hybrid Probabilistic Slope Stability Analysis (HPSSA), tailored for Mine 4 of the Gol-E-Gohar iron complex in Iran. The mine walls are first divided into 8 separate structural zones, including A-A' to H-H' sections for slope stability analysis. Then, sufficient core specimens are prepared from 22 drilled boreholes and the required parameters for slope design, including cohesion (c), friction angle (φ), and unit weight (γ), are measured. Finally, the HPSSA approach is performed through the combination of Monte Carlo simulation (MCS), Mohr-Coulomb criterion and Bishop's technique. According to the HPSSA results, the normal distribution function is achieved as the best curve fit for c, φ and γ parameters. Also, the obtained values of mean probabilistic safety factor (SF) for defined structural zones vary from 0.93 to 1.86, with the probability of failure (PF) of 0 to 75.6%. Moreover, SF values varied from 0.68 to 1.22 (mean value of 0.93) with a PF of 75% for the A-A' section and from 0.65 to 1.24 (mean value of 0.97) with a PF of 60% for the H-H' section. Hence, it is concluded that the A-A' section and mine’s north wall are more prone to instability with PF>60%. On the other hand, SF>1.2 and PF<5% for other mine walls (sections B-B'-G-G') prove that they are highly unlikely to be unstable. Displacement monitoring of the pit walls using installed prisms confirmed that average displacements in structural zones have a similar trend with SF values of the HPSSA. The results show a good agreement between the trend of probabilistic SFs and monitored slope displacements. Lastly, comparative analysis confirmed the validity of the suggested HPSSA approach with relatively higher accuracy than most previous slope stability analysis methods.
Original Research Paper
Exploration
Parnian Javadi Sharif; Alireza Arab Amiri; Behzad Tokhmechi; Fereydoun Sharifi
Abstract
The technique referred to as Complex Resistivity (CR) or Spectral Induced Polarization (SIP) possesses the capability to distinguish between various kinds of minerals or the sources of induced polarization by utilizing the physical characteristics of minerals or polarizable inclusions. The Generalized ...
Read More
The technique referred to as Complex Resistivity (CR) or Spectral Induced Polarization (SIP) possesses the capability to distinguish between various kinds of minerals or the sources of induced polarization by utilizing the physical characteristics of minerals or polarizable inclusions. The Generalized Effective Medium Theory of Induced Polarization (GEMTip) model is utilized to derive physical characteristics from SIP data. Different inversion methods are applied for this task, though they encounter difficulties such as computational costs, non-linearity, and the intricacy of the inverse issue. To tackle this, a new inversion approach based on Deep Learning (DL) via Convolutional Neural Network (CNN) is proposed for predicting the parameters of polarizable particles from SIP data. The CNN is trained on 20000 synthetic datasets produced using the GEMTip forward model. While DL networks address non-linearities, specific modifications are applied to synthetic datasets to evaluate the influence of non-linearity and correlation on the results. In the Kervian region southwest of Saqqez city, gold mineralization is linked to quartz and pyrite minerals, with two types of pyrite recognized - coarse-grained barren and fine-grained auriferous. The existence of sulfide mineral pyrite, along with variations in pyrite sizes, presents an attractive target for SIP exploration in the investigated area. The trained network is also validated on Gravian data and effectively retrieves parameters as evidenced by the data. The proposed methodology simplifies the inversion process by estimating parameters in one step, enabling a direct and efficient procedure.
Original Research Paper
Environment
Daniyal Ghadyani; Amirhossein Badraddini; Mohammad Mirzehi Kalateh Kazemi; Vahab Sarfarazi; Hadi Haeri; Jinwei Fu; Sohrab Naser Mostofi; Vahid Khodabandeloo; Mohammad Fatehi Marji
Abstract
Regarding the hazard-prone working conditions in underground mines, synchronous monitoring and alarm system is vital to increase the safety. By analyzing the accidents in underground mines in Iran, it can be deduced that most fatalities are related to gas leakage, objects drop off on the head, and not ...
Read More
Regarding the hazard-prone working conditions in underground mines, synchronous monitoring and alarm system is vital to increase the safety. By analyzing the accidents in underground mines in Iran, it can be deduced that most fatalities are related to gas leakage, objects drop off on the head, and not using helmets by the staff. Therefore, a smart helmet with the capability of measuring harmful gasses (regarding the type of the mine), detection of the existence of the helmet on the head, temperature and humidity measurement, and detection of blow on the head is designed and fabricated to eliminate the present dangers and problems. This system displays the evaluated data on a developed software through wireless data transmission hardware. The data transmission hardware is the primary a link between the intelligent safety helmet and the software. To follow the idea, practical experiments have been performed in Parvadeh four and East Parvadeh of Tabas coal mine to confirm the validity of data transmission that culminated in successful results. The results were altered by the complexity of the design of the underground spaces so that in a straight direction, data transmission was held until 430 meters. However, further progress was not possible due to tunnel limitations. Data transmission was reduced to 190 meters in access horizons with curvatures or tilts. According to present standards, some thresholds are defined for each of the mentioned cases such that alarm protocol is activated by exceeding these thresholds in critical circumstances. Then the helmet user and the software’s operator will be informed of the occurred danger and will settle the problem. The system outlined in this study ensures performance reliability through its alarm package. A key innovation is the in-depth examination of the impact of head injuries, transforming it into other factors by analyzing relevant content and setting boundaries for assessment rather than using specific numbers. Furthermore, the most evident aspect of this design is the enhancement of the managerial approach, which includes an attendance evaluation platform and performance reporting within the system.
Original Research Paper
Environment
Azadeh Agah; Faramarz Doulati Ardejani
Abstract
This study aimed to develop a model to illustrate the migration of petroleum hydrocarbons that penetrate the underground environment due to leakage from storage tanks located below the surface.The transport model for non-aqueous phase liquids was integrated with contaminant transport models in two dimensions ...
Read More
This study aimed to develop a model to illustrate the migration of petroleum hydrocarbons that penetrate the underground environment due to leakage from storage tanks located below the surface.The transport model for non-aqueous phase liquids was integrated with contaminant transport models in two dimensions to forecast the contamination of groundwater and soil-gas resulting from the migration of light non-aqueous phase liquids on the water surface. The finite volume method was employed to obtain numerical solutions. The findings indicated that evaporation significantly influences the migration of non-aqueous phase liquids. The soluble plume's production and movement were impacted by the geological features of the location and the existence of the free phase plume. Comparing the model predictions and the results from the field studies for the thickness of non-aqueous phase liquids plume over water indicates a good agreement between the results of the two methods with an average error of less than 5%. The maximum thickness of non-aqueous phase liquids plume between 7 and 7.5 meters was obtained at a distance of 2250 meters from the beginning of the investigated profile. Although 36 years have passed since the leakage occurred, a significant amount of the spilled mass still remained in the non-aqueous phase liquids. The prolonged migration of non-aqueous phase liquids over this time period has led to the contamination of groundwater and the accumulation of significant quantities of contaminated soil.
Original Research Paper
Exploration
Mina Shafiabadi; Abolghasem Kamkar Rouhani
Abstract
Considering the effect of fractures in increasing hydrocarbon recovery, the study of reservoir rock fractures is of particular importance. Fractures are one of the most important fluid flow paths in carbonate reservoirs. Image logs provide the ability to detect fractures and other geological features ...
Read More
Considering the effect of fractures in increasing hydrocarbon recovery, the study of reservoir rock fractures is of particular importance. Fractures are one of the most important fluid flow paths in carbonate reservoirs. Image logs provide the ability to detect fractures and other geological features and reservoir layers. In this study, two approaches were used to detect fractures using FMI image log in two wells A and B located in one of oilfields in southwest of Iran. In the first stage, the correction and processing of the FMI raw data were carried out to identify the number and position of fractures, as well as the dip, extension, classification, and density of fractures. In the second step, by considering that the fractures possess the edges in the FMI images, various edge detection filters such as Prewitt, Canny, Roberts, LOG, Zero-cross and Sobel were applied on the image data, and then, their performances for identification of fractures were compared. Finally, the automatic identification of fractures was done by applying the Hough transform algorithm and the results showed that Canny algorithm was the best option to perform Hough transformation. The comparison of the efficiency of the above-mentioned edge detection filters for identification of fractures, and more importantly, the automatic identification of fractures using the Hough transform algorithm can be considered as the novelty of this research work.
Original Research Paper
Environment
Hamid Sarkheil; Shahram Alghasi; Ali Sadeghy Nejad
Abstract
Environmental degradation, particularly in marine ecosystems, has become a critical issue, due to industrial activities. Offshore areas are significantly impacted by the deep sea mining operations, leading to pollution and ecological imbalances. The existing environmental risk assessment models often ...
Read More
Environmental degradation, particularly in marine ecosystems, has become a critical issue, due to industrial activities. Offshore areas are significantly impacted by the deep sea mining operations, leading to pollution and ecological imbalances. The existing environmental risk assessment models often fail to integrate the qualitative and quantitative data effectively, highlighting a significant research work gap. This work aims to address this gap by developing a comprehensive framework using the Bayesian Networks (BN), and the NETICA software to evaluate the risks associated with the installation of three-legged deep sea mining structures. The major goals are to systematically identify and prioritize the risks, and to develop effective mitigation strategies. The novelty of this work lies in its innovative use of the Bayesian modeling to combine the expert knowledge with the empirical data, providing a detailed categorization of risks into the low, medium, and high levels. The output parameters focus on the severity, likelihood, and detectability of risks. The results indicate that 40% of the habitat destruction risks are low, 46% fall within the ALARP region, and 14% are high, while the species destruction risks are 31% low, 50% ALARP, and 19% high. These findings guide the targeted mitigation measures to ensure effective protection of the offshore marine environment. Also the work concludes with a set of recommendations aimed at mitigating identified risks, and minimizing the environmental impacts. These include the implementation of advanced monitoring technologies, adoption of best management practices, and enforcement of stricter regulatory frameworks.
Original Research Paper
Exploration
Rashed Pourmirzaee; Hadi Jamshid Moghaddam
Abstract
In recent years, hyperspectral data have been widely used in earth sciences because these data provide accurate spectral information of the earth's surface. This research aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping alteration mineral in the Astarghan area, NW Iran. ...
Read More
In recent years, hyperspectral data have been widely used in earth sciences because these data provide accurate spectral information of the earth's surface. This research aims to apply match filtering (MF) on Hyperion hyperspectral imagery for mapping alteration mineral in the Astarghan area, NW Iran. Astarghan is located in the northwest of Iran where deposits of low-sulfide gold-bearing ore rocks occur as veins and stockworks. Therefore, at first, the Astarghan Hyperion scene was topographically and atmospherically corrected. Then, the data quality was surveyed to recognize bad bands and improve the accuracy of the subsequent processing steps. In MF analysis, it is a challenge to separate MF abundance images to target and background pixels. Therefore, to cope with this challenge, a moving threshold technique is proposed. The results indicated three indicative minerals including kaolinite, opal and jarosite. Then, the results were statistically verified by virtual verification and geological data. The verification was performed virtually using United States Geological Survey (USGS) spectral library data, which showed an agreement of 78.06%. Moreover, a comparison of the MF analysis results showed a good agreement with field investigations and overlaying with a detailed geological map of the study area. Finally, in this study the X-ray diffraction (XRD) of three indicative mineral samples was used to check the efficiency of the applied method.
Original Research Paper
Environment
Akram Abdolahadi; Seyed Jamal Sheikhzakariaee; Abdollah Yazdi; Seyed Zahed Mousavi
Abstract
The Plio-quaternary sub-volcanic domes are the products of magmatism in the Turkish-Iranian plateau in the collision zone between Eurasia and Arabia. Intermediate-felsic volcanic rocks are found 50 km west of Ardabil. These volcanic domes make a significant part of the Sabalan volcanic, a Plio-quaternary ...
Read More
The Plio-quaternary sub-volcanic domes are the products of magmatism in the Turkish-Iranian plateau in the collision zone between Eurasia and Arabia. Intermediate-felsic volcanic rocks are found 50 km west of Ardabil. These volcanic domes make a significant part of the Sabalan volcanic, a Plio-quaternary stratovolcano in northwest Iran. The igneous rocks (adakitic) include dacite, trachyte, andesite, trachy-andesite, and trachydacite, associated with ignimbrite and pyroclastic equivalents. They mainly comprise phenocrysts and a microcrystalline groundmass of pyroxene, amphibole, and plagioclase, with biotite and titanomagnetite. These rocks are enriched in Light Rare Earth Elements (LRREs) and Large Ion Lithophile Elements (LILEs) and depleted from Heavy Rare Earth Elements (HRREs) and High-Field Strength Elements (HFSEs). In these rocks, the SiO2 content is 56-66 wt%, Na2O is > 3.5 wt%, Al2O3 > 15 wt%, Yb < 0.2 ppm, and Y < 7 ppm, which are typical of high silica adakitic rocks. The initial ratios of the 143Nd/144Nd range from 0.5127 to 0.5129 and the initial ratios of 87Sr/86Sr for the adakites range from 0.7035 to 0.7060, reflecting the heterogeneity of the mantle and different degrees of crystallization. These geological, geochemical, and Sr, and Nd isotopic data indicate that these rocks belong to the post-collisional adakite type, and are derived from low-degree partial melting of a subduction-metasomatized continental lithospheric mantle (eclogite or amphibolite garnet). In the studied area, mineralization related to Plio-quaternary adakitic rocks has not been observed.