Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran

2 School of Mechanical and Mining Engineering, University of Queensland, Australia

Abstract

The production rate and cut-off grade are two critical variables in the design and planning of open-pit mines. Generally, the production rate depends on the reserve amount, which is influenced by the cut-off grade. Additionally, the cut-off grade is affected by the production cost, which is influenced by the production rate and product price. A conventional approach optimizes each variable individually, and neglects the trade-off between production rate and cut-off grade, leading to a sub-optimal solution. This work aimed to address the simultaneous optimization of the production rate and cut-off grade and provided a novel solution for this problem. In this context, a non-linear mathematical model was developed. The Particle Swarm Optimization (PSO) algorithm was used due to the model's non-linear nature and the continuous decision variables. Implementing the model for a typical copper mine showed that the suggested model resulted in a concurrent optimization of production rate and cut-off grade. The maximum NPV of 1.153 billion dollars occurred at a production rate of 15.66 Mt/y, and a cut-off grade of 0.64%. Additionally, a sensitivity analysis was conducted for key factors such as product price, discount rate, and maximum capital cost.

Keywords

Main Subjects

[1]. McCarthy, P. L. (2010). Beyond the feasibility study-Mine optimization in the real world. In Proceedings of the second International Seminar on Strategic versus Tactical Approaches in Mining (pp. 1-8).
[2]. Smith, L. D. (1997). A critical examination of the methods and factors affecting the selection of an optimum production rate. CIM bulletin, 90(1007), 48-54.
[3]. Changsheng, J., & Youdi, Z. (2000). Optimization model of surface mine production rate, Society for Mining, Metallurgy & Exploration.
[4]. O’Hara, T. A., & Suboleski, S. C. (1992). Costs and cost estimation. SME mining engineering handbook, 1, 405-424.
[5]. Hustrulid, W. A., Kuchta, M., & Martin, R. K. (2013). Open-pit mine planning and design, two volume set & CD-ROM pack. CRC Press.
[6]. Wells, H. M. (1978). Optimization of mining engineering design in mineral valuation. Mining Engineering, 30(12), 1676-1684.
[7]. Smith, L. D. (1999). The argument for a bare bones base case. CIM bulletin, 92(1031), 143-150.
[8]. Taylor, H. K. (1986). Rates of working of mines-a simple rule of thumb. Institution of Mining and Metallurgy Transactions. Section A. Mining Industry, 95.
[9]. Runge, I. C. (1998). Mining economics and strategy. Society for Mining, Metallurgy & Exploration.
[10]. Dowd, P. (1976). Application of Dynamic and Stochastic Programming to Optimize Cutoff Grades and Production Rates.
[11]. Cavender, B. (1992). Determination of the optimum lifetime of a mining project using discounted cash flow and option pricing techniques. Mining Engineering, 44(10), 1262-1268.
[12]. Hajdasiński, M. M. (1995). Optimizing mine life and design capacity. International Journal of Surface Mining and Reclamation, 9(1), 23-30.
[13]. Sabour, S. A. (2002). Mine size optimization using marginal analysis. Resources Policy, 28(3-4), 145-151.
[14]. Ordin, A. A., & Ordin, D. A. (2000). Optimizing the design capacity of a mine under conditions of investment risk. Journal of Mining Science, 36(1), 66-73.
[15]. Elkington, T., & Durham, R. (2011). Integrated open-pit pushback selection and production capacity optimization. Journal of mining science, 47, 177-190.
[16]. Ordin, A. A., Nikol’sky, A. M., & Golubev, Y. G. (2012). Lag modeling and design capacity optimization at operating diamond placer mines “Solur” and “Vostochny,” Republic of Sakha (Yakutia). Journal of Mining Science, 48, 515-524.
[17]. Zuo, H. Y., Luo, Z. Q., Guan, J. L., & Wang, Y. W. (2013). Multidisciplinary design optimization on production scale of underground metal mine. Journal of Central South University, 20, 1332-1340.
[18]. Kizilkale, A. C., & Dimitrakopoulos, R. (2014). Optimizing mining rates under financial uncertainty in global mining complexes. International Journal of Production Economics, 158, 359-365.
[19]. Malli, T., Pamukcu, C., & Köse, H. (2015). Determination of optimum production capacity and mine life considering net present value in open-pit mining at different overall slope angles. Acta Montanistica Slovaca, 20(1), 62-70.
[20]. Akishev, A. N., Zyryanov, I. V., Kornilkov, S. V., & Kantemirov, V. D. (2017). Improving Evaluation Methods for Production Capacity and Life of Open Pit Diamond Mines. Journal of Mining Science, 53, 71-76.
[21]. Salama, A., Nehring, M., & Greberg, J. (2017). Financial analysis of the impact of increasing mining rate in underground mining using simulation and mixed integer programming. Journal of the Southern African Institute of Mining and Metallurgy, 117(4), 365-372.
[22]. Arteaga, F., Nehring, M., & Knights, P. (2018). The equipment utilization versus mining rate trade-off in open-pit mining. International Journal of Mining, Reclamation and Environment, 32(7), 495-518. 
[23]. Magda, R. (2018). Impact of the rate of utilising the mine production capacity on the unit production costs. Gospodarka SurowcamI Mineralnymi, 34(3), 119-134.
[24]. Neingo, P. N., Tholana, T., & Nhleko, A. S. (2018). A comparison of three production rate estimation methods on South African platinum mines. Resources Policy, 56, 118-124.
[25]. Souza, F. R., Câmara, T. R., Torres, V. F. N., Nader, B., & Galery, R. (2019). Optimum mine production rate based on price uncertainty. REM-International Engineering Journal, 72, 625-634.
[26]. Nyandwe, E. M., Zhang, Q., & Wang, D. (2020). Optimization of ore production in copper mine. American Journal of Industrial and Business Management, 10(01), 61.
[27]. Sohrabi, P., Dehghani, H., & Jodeiri Shokri, B. (2021). Determination of optimal production rate under price uncertainty—Sari Gunay gold mine, Iran. Mineral Economics, 1-15.
[28]. Liu, G., Guo, W., Chai, S., & Li, J. (2023). Research on production capacity planning method of open-pit coal mine. Scientific Reports, 13(1), 8676.
[29]. Park, Y. H. (1992). Economic optimization of mineral development and extraction, Ph.D Thesis, McGill University, Department of Mining and Materials Engineering.
[30]. Sari, Y. A. (2015). Mine production scheduling through Heuristic memory based, improved simulated annealing. McGill University (Canada).
[31]. Asad, M. W. A., Qureshi, M. A., & Jang, H. (2016). A review of cut-off grade policy models for open pit mining operations. Resources Policy, 49, 142-152.
[32]. Vickers, E. L. (1961). The Application of Marginal Analysis in the Determination of Cut-Off Grade. In Annual Meeting of AIME.
[33]. Lane, K. F. (1964). Choosing the optimum cut-off grade Q. Colorado Sch. Min., 59, pp-811.
[34]. Lane, K. F. (1988). The Economic Definition of Ore--Cut-Off Grades in Theory and Practice. (Retroactive Coverage). Mining Journal Books, 60 Worship Street, London EC 2 A 2 HD, UK, 1988.
[35]. Nieto, A., & Bascetin, A. (2006). Mining cutoff grade strategy to optimise NPV based on multi-year GRG iterative factor. Mining Technology, 115(2), 59-64.
[36]. Bascetin A., & Nieto A. (2007). Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor. Journal of the Southern African Institute of Mining and Metallurgy, 107(2), 87-94.
[37]. Asad, M. W. A. (2007). Optimum cut‐off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation. Engineering Computations, 24(7), 723-736.
[38]. He, Y., Zhu, K., Gao, S., Liu, T., & Li, Y. (2009). Theory and method of genetic-neural optimizing cut-off grade and grade of crude ore. Expert Systems with Applications, 36(4), 7617-7623.
[39]. Gholamnejad, J. (2008). Determination of the optimum cut-off grade considering environmental cost. J. Int. Environmental Application & Science, 3(3), 186-194.
[40]. Gholamnejad, J. (2009). Incorporation of rehabilitation cost into the optimum cut-off grade determination. Journal of the Southern African Institute of Mining and Metallurgy, 109(2), 89-94.
[41]. King, B. (2009). Optimal Mining Principles. Orebody modelling and strategic mine planning. In Conference Proceedings, AusIMM.
[42]. Abdollahisharif, J., Bakhtavar, E., & Anemangely, M. (2012). Optimal cut-off grade determination based on variable capacities in open-pit mining. Journal of the Southern African Institute of Mining and Metallurgy, 112(12), 1065-1069.
[43]. Khodayari, A., & Jafarnejad, A. (2012). Cut-off grade optimization for maximizing the output rate. International Journal of Mining and Geo-Engineering, 46(2), 157-162.
[44]. Gama, C. D. (2013). Easy profit maximization method for open-pit mining. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 350-353.
[45]. Rendu, J. M. (2014). An introduction to cut-off grade estimation. Society for Mining, Metallurgy, and Exploration.
[46]. Johnson, P. V., Evatt, G. W., Duck, P. W., & Howell, S. D. (2011). The determination of a dynamic cut-off grade for the mining industry. Electrical engineering and applied computing, 391-403.
[47]. Dagdelen, K., & Kawahata, K. (2008). Value creation through strategic mine planning and cutoff-grade optimization. Mining Engineering, 60(1), 39.
[48]. Ganguli, R., Dagdelen, K., & Grygiel, E. (2011). Mine scheduling and cut-off grade optimization using mixed integer linear programming. Chapter, 9, 850-852.
[49]. Ahmadi, M. R., & Bazzazi, A. A. (2019). Cutoff grades optimization in open pit mines using meta-heuristic algorithms. Resources Policy, 60, 72-82.
[50]. Ahmadi, M. R., & Bazzazi, A. A. (2020). Application of meta-heuristic optimization algorithm to determine the optimal cutoff grade of open pit mines. Arabian Journal of Geosciences, 13, 1-12.
[51]. Fathollahzadeh, K., Mardaneh, E., Cigla, M., & Asad, M. W. A. (2021). A mathematical model for open pit mine production scheduling with Grade Engineering® and stockpiling. International Journal of Mining Science and Technology, 31(4), 717-728.
[52]. Sotoudeh, F., Nehring, M., Kizil, M., Knights, P., & Mousavi, A. (2021). A novel cut-off grade method for increasing the sustainability of underground metalliferous mining operations. Minerals Engineering, 172, 107168.
[53]. Innocente, M. S. (2021). Population-based methods: particle swarm optimization-development of a general-purpose optimizer and applications. arXiv preprint arXiv:2101.10901.
[54]. Montgomery, D. C. (2017). Design and analysis of experiments.  John Wiley & sons.
[55]. Tripathi, D. P., & Jena, U. R. (2016). Cognitive and social information based PSO. International Journal of Engineering, Science and Technology, 8(3), 64-75.
[56]. Eberhart, R., & Kennedy, J. (1995, November). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942-1948).
[57]. Rashidinezhad, F., Osanlou, M., & Rezaei, B. (2008). Cut-off grades optimization with environmental management; a case study: Sungun copper project. IUST International Journal of Engineering Science, Vol. 19, No.5-1, Page 1-13.
[58]. InfoCostMine Inc. (2007). Mining Cost Service. USA.