[1]. Liu, Y., Kang, Y., Mu, B., & Wang, A. (2014). Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution. Chemical Engineering Journal, 237, 403–410.
[2]. Wang, W., & Wang, A. (2016). Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Applied Clay Science, 119, 18–30.
[3]. Li, X., Simon, U., Bekheet, M. F., & Gurlo, A. (2022). Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. Energies 2022, Vol. 15, Page 5607, 15(15), 5607.
[4]. Dong, W., Lu, Y., Wang, W., Zhang, M., Jing, Y., & Wang, A. (2020). A sustainable approach to fabricate new 1D and 2D nanomaterials from natural abundant palygorskite clay for antibacterial and adsorption. Chemical Engineering Journal, 382, 122984.
[5]. Lu, Y., & Wang, A. (2022). From structure evolution of palygorskite to functional material: A review. Microporous and Mesoporous Materials, 333, 111765.
[6]. Akintola, G. O. (2018). Evaluation of major clay deposits for potential industrial utilization in Vhembe District Municipality, Limpopo Province of South Africa. https://univendspace.univen.ac.za/handle/11602/1128
[7]. Suárez, M., García-Rivas, J., Morales, J., Lorenzo, A., García-Vicente, A., & García-Romero, E. (2022). Review and new data on the surface properties of palygorskite: A comparative study. Applied Clay Science, 216, 106311.
[8]. Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17(5–6), 207–221.
[9]. Wahab Al-Ajeel, A. A., Abdullah, S. N., MKh Mustafa, A., & Wahab Al, A. A. (2008). Beneficiation Of Attapulgite-Montmorillonite Claystone By Dispersion Sedimentation. Iraqi Bulletin of Geology and Mining, 4(1), 117–124.
[10]. Xu, C., Feng, Y., Li, H., Li, Y., & Yao, Y. (2024). Purification of natural palygorskite clay: Process optimization, cleaner production, mineral characterization, and decolorization performance. Applied Clay Science, 250, 107268.
[11]. Yu, C. F., Zhu, Y. F., Zhou, G. H., Ding, H. Y., & Zhang, Y. (2016). Preparation and Photocatalytic Activity of Attapulgite/WO3 Nanocomposites. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(10), 1584–1589.
[12]. Khoury, H. N. (2018). Economic potentials of industrial rocks and minerals in the Azraq basin, NE Jordan. Arabian Journal of Geosciences, 11(4), 1–22.
[13]. Khoury, H. N. (2019). Industrial rocks and minerals of Jordan: a review. Arabian Journal of Geosciences, 12(20), 1–39.
[14]. Chen, H., Zhao, J., Zhong, A., & Jin, Y. (2011). Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174(1), 143–150.
[15]. Chen, D., Wang, A., Li, Y., Hou, Y., & Wang, Z. (2019). Biosurfactant-modified palygorskite clay as solid-stabilizers for effective oil spill dispersion. Chemosphere, 226, 1–7.
[16]. Yang, R., Li, D., Li, A., & Yang, H. (2018). Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 151, 20–28.
[17]. Cheng, Y., Xu, Q., Chen, Y., Su, Y., Wen, C., & Zhou, Y. (2018). Modified Palygorskite Improves Immunity, Antioxidant Ability, Intestinal Morphology, and Barrier Function in Broiler Chickens Fed Naturally Contaminated Diet with Permitted Feed Concentrations of Fusarium Mycotoxins. Toxins 2018, Vol. 10, Page 482, 10(11), 482.
[18]. Lakbita, O., Rhouta, B., Maury, F., Senocq, F., Amjoud, M., & Daoudi, L. (2019). On the key role of the surface of palygorskite nanofibers in the stabilization of hexagonal metastable β-Ag2CO3 phase in palygorskite-based nanocomposites. Applied Clay Science, 172, 123–134.
[19]. Moreira, M. A., Ciuffi, K. J., Rives, V., Vicente, M. A., Trujillano, R., Gil, A., Korili, S. A., & de Faria, E. H. (2017). Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes. Applied Clay Science, 135, 394–404.
[20]. Lu, Y., Wang, W., Wang, Q., Xu, J., & Wang, A. (2019). Effect of oxalic acid-leaching levels on structure, color and physico-chemical features of palygorskite. Applied Clay Science, 183, 105301.
[21]. Wang, A., & Wang, W. (2019). Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials, 21–133.
[22]. Xavier, K. C. M., Dos Santos, M. D. S. F., Santos, M. R. M. C., Oliveira, M. E. R., Carvalho, M. W. N. C., Osajima, J. A., & Da Silva Filho, E. C. (2014). Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition. Materials Research, 17, 3–08.
[23]. Nefzi, H., Abderrabba, M., Ayadi, S., & Labidi, J. (2018). Formation of Palygorskite Clay from Treated Diatomite and its Application for the Removal of Heavy Metals from Aqueous Solution. Water 2018, Vol. 10, Page 1257, 10(9), 1257.
[24]. Jin, Y. L. , Q. Y. H. , Z. H. F. , Y. H. Q. , Z. Y. P. (2004). Effect of ultrafine grinding on the crystal structure and morphology of attapulgite clay. Non-Met. Mines (Chin.), 27(3).
[25]. Liu, Y., Wang, W. B., & Wang, A. Q. (2012). Effect of dry grinding on the microstructure of palygorskite and adsorption efficiency for methylene blue. Powder Technolgy, 225, 124–129.
[26]. Wang, S. (2005). Effect of extrusion on the bond behavior of attapulgite clay. China NonMetal. Mine. And. Her., 3.
[27]. Everett, J., & Peirce, J. J. (1990). Effect of Feed Rate and Classifier Height on Air Classification. Journal of Environmental Engineering, 116(4), 735–745.
[28]. Xu, J., Wang, W., & Wang, A. (2014). Enhanced microscopic structure and properties of palygorskite by associated extrusion and high-pressure homogenization process. Applied Clay Science, 95, 365–370.
[29]. Andrade, F. A., Al-Qureshi, H. A., & Hotza, D. (2011). Measuring the plasticity of clays: A review. Applied Clay Science, 51(1–2), 1–7.
[30]. Sun, X., Chen, Y., Liang, L., Xie, G., & Peng, Y. (2023). Research on Hydrocyclone Separation of Palygorskite Clay. Minerals 2023, Vol. 13, Page 1264, 13(10), 1264.
[31]. Li, M., Wu, Z., & Kao, H. (2011). Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Applied Energy, 88(9), 3125–3132.
[32]. Everett, J., & Jeffrey Peirce, J. (1990). Effect of feed rate and classifier height on air classification. Journal of Environmental Engineering, 116(4), 735–745.