[1]. Liu, L., Yang, L., Shen, L., & Xiao, H. (2023). Research progress and prospect of geothermal resources. Proc, E3S Web of Conferences, 393, 01001.
[2]. Koerniawati, I., Prakoso, L.Y., Putri, R.H., & Khotimah, N. (2023). Geothermal Energy Potential In Supporting National Defense And Economic Sustainability In Developing Countries. Return: Study of Management, Economic and Bussines, 2(3), 260-268.
[3]. IGA Service GmbH. (2014). Best practices guide for geothermal exploration. Bochum University, 194 p.
[4]. Agoubi, B. (2021). Origin, heating process, and groundwater flow system of non-volcanic thermal aquifers in Tunisia. Arabian Journal of Geosciences, 14(5), 369.
[5]. Olasolo, P., Juárez, M.C., Morales, M.P., & Liarte, I.A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133-144.
[6]. Samrock, F., Kuvshinov, A., Bakker, J., Jackson, A., & Fisseha, S. (2015). 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia. Geophysical Journal International, 202(3), 1923–1948.
[7]. Rai, S.M. (2020). Hot water springs (thermal springs) in Nepal: A review on their location, origin, and importance. Journal of Development Innovations, 4(2), 24-42.
[8]. Baioumy, H., Nawawi, M., Wagner, K., & Arifin, M.H. (2015). Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research, 290, 12–22.
[9]. Stober, I., & Bucher, K. (2021). Geothermal systems in high-enthalpy regions. In Geothermal Energy: From Theoretical Models to Exploration and Development. Springer International Publishing, pp. 227-256.
[10]. Tester, J. W., Anderson, B. J., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., ... & Toksoz, M. N. (2006). The future of geothermal energy. Massachusetts Institute of Technology, 358, 1-3.
[11]. Ho, C. S. (1979). Geothermal survey: Geothermometric measurements of hot springs in Perak and Kedah. Geological Survey of Malaysia, Annual Report, 1979, 282-288.
[12]. Samsudin, A.R., Hamzah, U., Rahman, A.R., Siwar, C., Mohd Jani, M.F., & Othman, R. (1997). Thermal springs of Malaysia and their potential development. Journal of Asian Earth Sciences, 15, 275-284.
[13]. Chow, W.S., Irawan, S., & Fathaddin, M.T. (2010). Hot springs in Malay Peninsula. Proc, World Geothermal Congress 2010, Bali, Indonesia.
[14]. Jabatan Mineral & Geosains Malaysia (JMG). (2013). Peta taburan air panas Semenanjung Malaysia.
[15]. Baioumy, H. M., Nawawi, M., Wagner, K., & Arifin, M. H. (2014). Geological setting and origin of non-volcanic hot springs in West Malaysia. In 3rd Annual International Conference on Geological & Earth Science (GEOS2014) ), 14-18.
[16]. Arifin, M. H. (2017). Hot springs characterisation and geothermal potential study in peninsula malaysia from geosciences persectives. Universiti Sains Malaysia.
[18]. Department of Statistics Malaysia. (2020). Overview electricity sector in Malaysia.
https://www.st.gov.my/
[19]. Fiffy, H.S., Elia, G., Hizami, H.N., Zulhazman, H., Nordiana, M.N., & Akmar, A.N. (2021). Evaluation on the potential of hot spring as nature tourism attraction in Lojing Highlands, Kelantan, Peninsula Malaysia. Proc, IOP Conference Series: Earth and Environmental Science, 736, 012017.
[20]. Mahamad Rezali, M.I.Z.I. (2009). Design harnessing hot spring's energy system for cocoa beans drying [Master's thesis]. Universiti Teknologi PETRONAS.
[21]. Ramly, F. (2017). Estimation and design of freshwater fish pond using low temperature geothermal sources at Sungai Klah hot springs [Master's thesis]. Universiti Sains Malaysia.
[22]. Metcalfe, I. (2013). Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76, 195–213.
[23]. Hall, R. (2014, November). The origin of Sundaland. In Proceedings Of Sundaland Resources Annual Convention (pp. 17-18).
[24]. Hutchison, C.S., & Tan, D.N.K. (Eds.). (2009). Geology of peninsular Malaysia. University of Malaya and Geological Society of Malaysia, 479 P.
[25]. Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., ... & Oliver, G.J.H. (2012). Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U–Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 169(4), 489-500.
[26]. Metcalfe, I. (2000). The Bentong–Raub Suture Zone. Journal of Asian Earth Sciences, 18, 691–712.
[27]. Metcalfe, I. (2006). Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1-2), 24-46.
[28]. Ghani, A.A., Lo, C.H., & Chung, S.L. (2013). Basaltic dykes of the Eastern Belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. Journal of Asian Earth Sciences, 77, 127-139.
[29]. Ng, S.W.P., Chung, S.L., Robb, L.J., Searle, M.P., Ghani, A.A., Whitehouse, M.J., ... & Roselee, M.H. (2015). Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Bulletin of the Geological Society of America, 127(1), 1209-1237.
[30]. Quek, L.X., Ghani, A.A., Lai, Y.M., Lee, H.Y., Saidin, M., Roselee, M.H., ... & Zulkifley, M.T.M. (2018). Absolute age evidence of Early to Middle Ordovician volcanism in Peninsular Malaysia. Current Science, 115(12), 2291-2296.
[31]. Quek, L., Lai, Y.M., Ghani, A.A., Roselee, M.H., Lee, H.Y., Iizuka, Y., ... & Jamil, A. (2021). Peninsular Malaysia transitional geodynamic process from Gondwana to Pangaea: New constraints from 500 to 200 Ma magmatic zircon U-Pb ages and Hf isotopic compositions. Gondwana Research, 94, 56-72.
[32]. Jamil, A., Ghani, A.A., Zaw, K., Osman, S., & Quek, L.X. (2016). Origin and tectonic implications of the∼ 200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. Journal of Asian Earth Sciences, 127, 32-46.
[33]. Zhang, C., Hu, S., Zhang, S., Li, S., Zhang, L., Kong, Y., ... & Wang, Z. (2020). Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources. Renewable Energy, 148, 284-297.
[34]. Zhang, C., Feng, Q., Zhang, L., Qin, S., Jiang, G., Hu, J., ... & Hassan, M. (2022). Characteristics of radiogenic heat production of widely distributed granitoids in western Sichuan, southeast Tibetan Plateau. Lithosphere, 2022(1).
[35]. Pleitavino, M., Carro Pérez, M.E., García Aráoz, E., & Cioccale, M.A. (2021). Radiogenic heat production in granitoids from the Sierras de Córdoba, Argentina. Geothermal Energy, 9(1), 16.
[36]. Liao, D., Feng, D., Luo, J., & Yun, X. (2023). Relationship between radiogenic heat production in granitic rocks and emplacement age. Energy Geoscience, 4, 100157.
[37]. Şener, M. F. (2024). Current status and potentials of enhanced geothermal systems in the Eastern Pontide Orogenic Belt, Turkey. International Journal of Renewable Energy Development, 13(3), 521-531.
[38]. Guillou-Frottier, L., Milesi, G., Roche, V., Duwiquet, H., & Taillefer, A. (2024). Heat flow, thermal anomalies, tectonic regimes and high-temperature geothermal systems in fault zones. Comptes Rendus. Géoscience, 356(S2), 389-421.
[39]. Kennedy, H., Löer, K., Gilligan, A., & Finger, C. (2023). Characterising faults in geothermal fields using surface waves: a numerical study. Proc, EGU General Assembly Conference Abstracts, EGU-5756.
[40]. Pérez-Drago, G., Arsenikos, S., & Piolle, T. (2024, June). Groundwater hydrothermal circulation modeling in crustal fault zones: Geothermal systems uncertainty and risk assessment. Proc, 85th EAGE Annual Conference & Exhibition (including the Workshop Programme), 1-5.
[41]. Harun, Z. (1991). Kajian sesar utama semenanjung Malaysia [Unpublished paper]. Universiti Kebangsaan Malaysia.
[42]. Harun, Z. (1992). Anatomi sesar-sesar utama Semenanjung Malaysia [Doctoral dissertation]. Universiti Kebangsaan Malaysia.
[43]. Balarabe, B. (2021). Structural analysis of aeromagnetic data and digital elevation model for geothermal mineralization potentials of Peninsular Malaysia. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 7(1)
[44]. Rosli, N. A., Anuar, M. N. A., Mansor, M. H., Rahim, N. S. I. A., & Arifin, M. H. (2022). What makes a hot spring, hot? Warta Geologi, 48(1), 29.
[45]. Taillefer, A., Milesi, G., Soliva, R., Monnier, L., Delorme, P., Guillou-Frottier, L., & Le Goff, E. (2021). Polyphased brittle deformation around a crustal fault: A multi-scale approach based on remote sensing and field data on the mountains surrounding the Têt hydrothermal system (Eastern Pyrénées, France). Tectonophysics, 804, 228710.
[46]. Dogan, D.D. (2023). A study on the effects of fault architecture on fluid circulation in the Gediz Graben by the finite volume method. Solid Earth Sciences, 8(2), 146-159.
[47]. Mitjanas, G., Walsh, J. J., Roca, E., Alías, G., Queralt, P., Ledo, J., & Piña-Varas, P. (2024). The importance of structural complexity in the localization of geothermal systems: A case study along the Vallès-Penedès Fault in the Catalan Coastal Ranges (NE Spain). Geothermics, 116, 102855.
[48]. Jullien-Sicre, A., Travé, A., Guinoiseau, D., Baqués, V., Saint-Bezar, B., Despinois, F., ... & Benedicto, A. (2022). The Geothermal Systems of the Vallès Fault (NE of Spain): Fracture Network Characterization and Weathering Patterns. Proc, International Conference on Mediterranean Geosciences Union, Springer Nature Switzerland, Cham, 49-52.
[49]. Shuib, M.K., Manap, M.A., Tongkul, F., Abd Rahim, I.B., Jamaludin, T.A., Surip, N., ... & Ahmad, Z. (2017). Active faults in Peninsular Malaysia with emphasis on active geomorphic features of Bukit Tinggi region. Malaysian Journal of Geoscience, 1(1), 13-26.
[50]. Lat, C. N. (2002). Reservoir induced seismicity (RIS): A case study from Kenyir Terengganu. In Proceedings of the Geophysical Contributions in the Environmental Studies and Conservation Seminar. Warta Geologi, 28(5).
[51]. Moeck, I.S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882.
[52]. Qian, X., Bai, T., Yu, Y., Mustapha, K.A., Sheldrick, T.C., Gan, C., & Wang, Y. (2023). Multiple stages of continental rifting in Eastern Peninsular Malaysia: New insights from Jurassic–Cretaceous granitoids. Journal of the Geological Society, 180(5), jgs2023-025.
[53]. Gobbett, D. J. (1971). Joint pattern and faulting in Kinta, West Malaysia. Bulletin of the Geological Society of Malaysia, (4).
[54]. Sautter, B., Pubellier, M., Jousselin, P., Dattilo, P., Kerdraon, Y., Choong, C.M., & Menier, D. (2017). Late Paleogene rifting along the Malay Peninsula thickened crust. Tectonophysics, 710, 205-224.
[55]. Burbank, D. W., & Anderson, R. S. (2013). Tectonic geomorphology (2nd ed.). Environmental & Engineering Geoscience, 19(2), 198-200.
[56]. Nazri, A.A., Umor, M.R., Razmi, N.S., Ghazali, M.A., Arifin, M.H., Nadzir, N.S.M., & Simon, N. (2024). Penentuan Zon Sesar di Ulu Bendul, Negeri Sembilan menggunakan Kaedah Keberintangan Geoeletrik dan Mikrostruktur Batuan. Sains Malaysiana, 53(4), 759-768.
[57]. Hochstein, M., & Hunt, T. (1970). Seismic, gravity and magnetic studies, Broadlands geothermal field, New Zealand. Geothermics, 2, 333–346.
[58]. Madon, M. B. H. (1997). Analysis of tectonic subsidence and heat flow in the Malay Basin (offshore Peninsular Malaysia). Annual Geological Conference '97, Kijal, Terengganu. Geological Society of Malaysia, Bulletin, 41, 95-108.
[59]. Hutchison, C.S. (1996). The "Rajang accretionary prism" and "Lupar Line" problem of Borneo. Geological Society, London, Special Publications, 106, 247–261.
[60]. Khoo, T.T., & Tan, B.K. (1983). Geological evolution of peninsular Malaysia. Proc, Workshop on Stratigraphic correlation of Thailand and Malaysia, Geol. Soc. Thailand and Geol. Soc. Malaysia, Bangkok, 1, 253-290.
[61]. Hutchison, C.S. (1977). Granite emplacement and tectonic subdivision of Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 9, 187-207.
[62]. Cobbing, E.J., Mallick, D.I.J., Pitfield, P.E.J., & Teoh, L.H. (1986). The granites of the Southeast Asian tin belt. Journal of the Geological Society, 143(3), 537-550.
[63]. Wagner, K., Nawawi, M., & Baioumy, H.M. (2013). Re-exploring the geothermal potential of west Malaysia. Submitted to Sains Malaysiana.
[64]. Bachik, A.R. (1990). A Preliminary Study on the Water Quality and Flow of Thermal Spring in Malay Peninsula. Geological Survey unpublished report, Ipoh, Malaysia, 170-185.
[65]. Yusoff, I. H. (1994). Geologi am dan kajian mata air panas sekitar Kg. Sungai Rengas dan Kg. Mata Ayer, Machang, Kelantan (Doctoral dissertation, Jabatan Geologi, Universiti Malaya).
[66]. B…Din, N. (1994). Geologi kawasan Lilo Slim Talont dan kajian mata air panas [Master's thesis]. University of Malaya.
[67]. Biro Rundingan & Kembangan. (1994). A study on the feasibility and development potentials of hot springs for tourism in Malaysia. Final report. Ministry of Public Enterprises, Malaysia.
[68]. Yee, L.P. (2008). Hydrogeochemical study of spring discharges in Kajang Semenyih District, Selangor [Master's thesis]. University of Malaya.
[69]. Zahudi, N. A. A. (2013). Geoheritage and geotourism potentials of Jeli hot spring, Jeli (Doctoral dissertation, Faculty of Earth Sciences), Universiti Malaysia Kelantan.
[70]. Sahak, F.N. (2013). Seismic refraction investigation of Jeli hotspring area, Jeli, Kelantan (Doctoral dissertation). Faculty of Earth Science, Universiti Malaysia Kelantan.
[71]. CHOONG, C.M. (2014). Structural history of the Kinta Valley, Perak, Malaysia [Doctoral dissertation]. Universiti Teknologi PETRONAS.
[72]. Aziz, S. N. (2016). General geology and structural analysis of Jeli Hot Spring, Jeli, Kelantan (Doctoral dissertation, Faculty of Earth Science), Universiti Malaysia Kelantan.
[73]. Supie, N.N.A. (2016). General geology and determination depth circulation of Tok Bok Hotspring in Machang Kelantan, (Doctoral dissertation, Faculty of Earth Science), Universiti Malaysia Kelantan.
[74]. Javino, F. (2016). Evolution of geothermal resources in granitic systems. Proc, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. SGP-TR-209.
[75]. Yahya, N. (2017). General geology and resistivity survey of pos hendrop hot spring, Lojing, Gua Musang, Kelantan [Doctoral dissertation]. Universiti Malaysia Kelantan.
[76]. Rahim, N.S.I.B.A. (2020). Geoscience characterisations of hot spring in selected areas in Peninsula Malaysia [Doctoral dissertation]. Universiti Kebangsaan Malaysia.
[77]. Nair, N.S.S. (2021). Geology of Kampung Lawar and Water Quality Assessment of Jeli and Tok Bok Hot Springs [Final Year Project thesis]. Universiti Malaysia Kelantan.
[78]. Samuding, K., Kamarudin, N.A., Sharifodin, M.S.M., Arifin, A., & Mohamad, K. (2016). Application of environmental isotope and hydrogeochemical techniques in investigating the geothermal resources. Proc, R&D Seminar 2016: Research and Development Seminar 2016, Bangi, Malaysia.
[79]. Anuar, M.N.A., Arifin, M.H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217, 104843.
[80]. Kipng'ok, J., & Kanda, I. (2012). Introduction to geochemical mapping. Proc, Short Course VII on Exploration for Geothermal Resources. UNU-GTP, GDC and KenGEn, Lake Bogoria and Lake Naivasha, Kenya.
[81]. Piper, A.M. (1994). A geographic procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–928.
[82]. Langelier, W.F., & Ludwig, H.F. (1942). Graphical methods for indicating the mineral character of natural waters. Journal of the American Water Works Association, 34, 335.
[83]. Fournier, R. O. (1973). SILICA IN THERMAL WATERS: LABORATORY GATIONS/AND FIELD INVESTIGATIONS. Proceedings: Hydrogeochemistry, 1, 122.
[84]. Fournier, R.O., & Truesdell, A.H. (1973). An empirical Na–K–Ca chemical geothermometers for natural waters. Geochimica et Cosmochimica Acta, 37, 1255–1275.
[85]. Ellis, A.J., & Mahon, W.A.J. (1977). Chemistry and geothermal systems. Academic Press, New York, 392 P.
[86]. D'Amore, F., Arnórsson, S., & Arnórsson, S. (2000). Isotopic and chemical techniques in geothermal exploration, development and use. International Atomic Energy Agency, INIS, 31(47).
[87]. Idroes, R., Yusuf, M., Alatas, M., Lala, A., Suhendra, R., & Idroes, G.M. (2018). Geochemistry of hot springs in the IeSeu'um hydrothermal areas at Aceh Besar district, Indonesia. IOP Conference Series: Materials Science and Engineering, 334(1), 012002.
[88]. Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., & Yosa, M. (2019). Characteristic of geothermal system at Semurup manifestation Kerinci: Geological and geochemistry investigation. IOP Conference Series: Earth and Environmental Science, 391(1), 012051.
[89]. Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.
[90]. Marini, L., Bonaria, V., Guidi, M., Hunziker, J. C., Ottonello, G., & Vetuschi Zuccolini, M. (2000). Fluid geochemistry of the Acqui Terme-Visone geothermal area (Piemonte, Italy). Applied Geochemistry, 15, 917-935.
[91]. Bott, W. (1891). The thermal springs of Selangor and Malacca. Journal of the Straits Branch of the Royal Asiatic Society, 24, 43-62.
[92]. Samsudin, A. R., & Hamzah, U. (1994). Geological study of thermal spring in Peninsular Malaysia. Sains Malaysiana, 23(1), 23-32.
[93]. Samsudin, A. R., Hamzah, U., & Rahman, R. A. (1996). Kajian Mata Air Panas di Semenanjung Malaysia (Hot Springs in Peninsular Malaysia). Sains Malaysiana, 25(2), 125-136.
[94]. TNB Research. (2010). Research and development on the potential of geothermal sources for power generation in Peninsular Malaysia. Phase 1: Development of a process and criteria in ranking the potential geothermal sources in Peninsular Malaysia for power generation. Report no.: TNB 187/2009.
[95]. Tuan Salim, T.H.H. (2010). Geochemistry of geothermal hotspring in Perak (CWS). Dissertation, Universiti Teknologi PETRONAS.
[96]. Leh, F.C., Nayan, N., & Baharom, A.A. (2011). Hot springs for a health tourism destination in Perak, Malaysia. Elixir Tourism Management, 39, 5054-5058.
[97]. Abd Rani, N.L. (2014). Assessment of chemicals and radionuclides compositions in hot springs water of Peninsular Malaysia [Doctoral dissertation]. Universiti Teknologi MARA.
[98]. Nazaruddin, D.A. (2015). Study on geoheritage and water quality of Pos Hendrop hot spring, Lojing Highlands, Kelantan, Malaysia. Universiti Malaysia Kelantan.
[99]. Javino, F. (2015). Evaluation for geothermal resources in granitic systems. Proc, World Geothermal Congress 2015, Melbourne, Australia.
[100]. Jabatan Mineral dan Geosains Malaysia. (2016). Laporan Penilaian Sumber Geoterma Bagi Potensi Penjanaan Tenaga Boleh Baharu di Kawasan Ulu Slim, Perak. JMG.PRK (KG) 01/2016.
[101]. Mahzan, A.A.B., Ramli, A.S.B., Abduh, A.S.B.M., Izhar, I.B., Indirakumar, M.Z.B.M.Y., Salih, A.A.M., ... & Wei, O.Q. (2017). Preliminary study of SG Serai Hot Spring, Hulu Langat, Malaysia. Water Conservation and Management, 1(1), 11-14.
[102]. Simon, N., Unjah, T., Yusry, M., & Dzulkafli, M. A. (2019). Physico-chemical characterisation and potential health benefit of the Hulu Langat Hot Spring in Selangor, Malaysia. Sains Malaysiana, 48(11), 2451-62.
[103]. Kurnia, J.C., Putra, Z.A., Muraza, O., Ghoreishi-Madiseh, S.A., & Sasmito, A.P. (2021). Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia. Renewable Energy, 175, 868-879.
[104]. Madon, M., & Jong, J. (2021). Geothermal gradient and heat flow maps of offshore Malaysia: Some updates and observations. Bulletin of the Geological Society of Malaysia, 71, 159-183.
[105]. Shlof, A.H., Arifin, M.H., Jannes, R.M., Mohamad, A., & Mansor, M.H. (2023). Integration of gravity and geochemistry data to evaluate the geothermal potential in Jasin, Melaka. Proc, EAGE Conference on the Future of Energy-Role of Geoscience in the Energy Transition, 1-6.
[106]. Everts, A.J.W. (2024). Geothermal energy potential of basement hot springs: Case study of Ulu Slim (Perak, Malaysia). Bulletin of the Geological Society of Malaysia, 77, 5-14.
[107]. Wright, P.M., Ward, S.H., Ross, H.P., & West, R.C. (1985). State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50, 2606-2699.
[108]. Kana, J.D., Djongyang, N., Raïdandi, D., Nouck, P.N., & Dadjé, A. (2015). A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44, 87-95.
[109]. Hamzah, U., Samsudin, A.R., & Rafek, A.G (1990). Penentuan Sifat geofizik jasad batuan di sekitar beberapa zon air panas di Malaysia. Laporan Akhir penyelidikan 35/89, Universiti Kebangsaan Malaysia.
[110]. Harun, A.R (1996). Hot springs investigation using the electromagnetic technique in Ladang Sg. Lalang, Hulu Langat, Selangor. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF6/96.
[111]. Razali, M.A.M. (1998). Geophysical investigations of the hot spring occurrences in the Sungei Serai and Kampung Dusun Tua areas, Hulu Langat, Selangor. GeoL. Soc. MaLaYJia, Bulletin, 42, 119-128.
[112]. Mohamed, K.R., Ali, C.A., Jaafar, C.A.R., & Ismail, A. (2001). Pemetaan awalan air panas kawasan Lojing, Gua Musang, Kelantan. Warisan Geologi Malaysia, 4, 147–159.
[113]. Mohamed, K.R., Ali, C.A., Jaafar, C.A.R., & Ismail, A. (2002). Mata air panas, Sungai Mering, Lojing, Gua Musang, Kelantan. Proc, Annual Geological Conference, 257–263.
[114]. Ismail, A., & Ashari, M. A. (1998). Kajian kualitatif mata air panas di negeri Kelantan. Jabatan Penyiasatan Kajibumi Kelantan, Kota Bharu, 22.
[115]. Ismail, A., Jaafar, A.R., & Sulaiman, Z.A. (2002). Siasatan Tinjauan Pemetaan Geotapak Mata Air Panas di Gua Musang, Kelantan. Jabatan Mineral dan Geosains Malaysia. Laporan No.: PWG (KLT) 01/2002.
[116]. Ramli, M.R., & Ho, C.S. (2002). Siasatan mata air panas menggunakan kaedah transient electromagnetic di kawasan Gua Musang, Kelantan. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF3/2002.
[117]. Ramli, M.R., & Harun, A.R. (2003). Siasatan mata air panas HS6 dan HS10 di kawasan Gua Musang, Kelantan menggunakan kaedah transient electromagnet. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF2/2003.
[118]. Ramli, M.R. (2003). Siasatan mata air panas menggunakan kaedah transient electromagnetic di kawasan Ulu Selim, Perak. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF5/2003.
[119]. Zulkifl, N.A.B. (2004). Geologi am Kawasan airpanas kg. la dan sekitarnya, Besut, Terengganu [Master's thesis]. University of Malaya.
[120]. Ahmad, A., & Ayub, D. (2008). Geophysical investigation at The Sungai Klah Hot Springs Park, Felda Sungai Klah, Sungkai, Perak. Universiti Kebangsaan Malaysia
[121]. Bin Abdul Rahim, A.W. (2015). Integrated geophysical exploration of a known geothermal resource: Ulu Slim, Hot Springs, Perak [Dissertation FYP]. Universiti Teknologi PETRONAS.
[122]. Jasme, N. (2016). General geology and subsurface investigation at Jeli Hot Spring, Jeli using resistivity method (Doctoral dissertation, Faculty of Earth Science). Universiti Malaysia Kelantan
[123]. Khalil, A.E., Nawawi, M., & Kamel, R. (2016). Seismic reflection survey at Ayer Hangat site to investigate shallow subsurface structures. IOP Conference Series: Earth and Environmental Science, 29(1), 012023.
[124]. Khalil, A.E., Nawawi, M., Arifin, M.H., Abdullah, F.M., Kayode, J.S., & Usman, N. (2017). Soil investigation at wet world hot spring complex for future development using active multichannel analysis of surface waves. Sains Malaysiana, 46(4), 537-543.
[125]. Arifin, M.H. (2017). Geoelectrical resistivity and induced polarisation (IP) survey for hot springs potential AT PT4298, HSD6112, Mukim Ayer Panas, Jasin, Melaka. Water Jaya Enterprise.
[126]. Kayode, J.S., Arifin, H., Nawawi, M., Khalil, A., & Baioumy, H. (2019). Characterization of the hot spring aquifers at Sungai Klah using potential fields geophysical methods. Proc, EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, European Association of Geoscientists & Engineers, 1-5.
[127]. Arifin, M.H., Nazer, N.M., Anuar, M.N.A., Baioumy, H., Mansor, M.H., Hussin, A., & Azmi, A. (2020). Effectiveness of the Application of Geoelectrical Resistivity Imaging and Induced Polarisation for Detection of Geothermal Source, Alor Gajah, Melaka, Malaysia. Proc, 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, European Association of Geoscientists & Engineers, 1-5.
[128]. Samsudin, N., Muztaza, N.M., Zakaria, M.T., Adeeko, T.O., Ahmad, F., & Arifin, M.H. (2020). Utilizing geophysical methods for geothermal exploration. Lowland Technology International, 22(1), 086-092.
[129]. Anukwu, G.C., Khalil, A.E., Mohd Nawawi, & Abdellatif M. Younis. (2020). Delineation of shallow structures in the vicinity of Ulu Slim hot spring using seismic refraction and MASW techniques. NRIAG Journal of Astronomy and Geophysics, 9(1), 7-15.
[130]. Yaro, U.Y., Abir, I.A., & Balarabe, B. (2023). Determination of Curie point depth, heat flow, and geothermal gradient to infer the regional thermal structure beneath the Malay Peninsula using de-fractal method. Arabian Journal of Geosciences, 16(1), 84.
[131]. Yaro, U.Y., & Abir, I.A. (2023). Variation in thermal structure with crustal thickness for the crust beneath the Peninsular Malaysia. Journal of Asian Earth Sciences: X, 9, 100146.
[132]. Li, J., Zhang, W., Li, M., & Liu, Y. (2022). A study on magnetotelluric characteristics of magmatic geothermal systems. Energies, 15(24), 9282.
[133]. Neukirch, M., Minakov, A., Argyrou, M., & Pirogova, N. (2022). Geothermal exploration of the Baia Mare Region (Romania) with magnetotellurics – Responses, analysis and 1D models. EGU General Assembly 2022, EGU22-1034.
[134]. Aboud, E., Arafa-Hamed, T., Alqahtani, F., Marzouk, H., Elbarbary, S., Abdulfaraj, M., & Elmasry, N. (2023). The geothermal magmatic system at the northern Rahat volcanic field, Saudi Arabia, revealed from 3D magnetotelluric inversion. Journal of Volcanology and Geothermal Research, 437, 107794.
[135]. Singh, R.K., Weckmann, U., & Srivastava, S. (2024). Magnetotelluric images of the medium enthalpy Bakreswar geothermal province within a granitic gneissic complex, Eastern Indian Peninsula. Geophysical Prospecting, 72(2), 857-881.
[136]. Arafa-Hamed, T., Zaher, M.A., El-Qady, G., Marzouk, H., Elbarbary, S., & Fujimitsu, Y. (2023). Deep heat source detection using the magnetotelluric method and geothermal assessment of the Farafra Oasis, Western Desert, Egypt. Geothermics, 109, 102648.
[137]. Ghanbarifar, S., Ghiasi, S.M., Hosseini, S.H., Abedi, M., Oskooi, B., & Smirnov, M.Y. (2024). Geoelectrical image of the Sabalan geothermal reservoir from magnetotelluric studies. Journal of Applied Geophysics, 224, 105359.
[138]. Siregar, R.N., Nukman, M., Widana, K.S., Harijoko, A., & Sismanto, S. (2024). Radiogenic geothermal systems of Bangka Island, Indonesia: Implications of high heat production and tectonic framework. Energy Geoscience, 5(4), 100306.
[139]. Xu, Z.H., Sun, Z.J., Xin, W., & Zhong, L. (2021). Geothermal resource potential assessment of Erdaobaihe, Changbaishan volcanic field: Constraints from geophysics. Open Geosciences, 13(1), 1053-1063.
[140]. Abdullayev, B., Askarova, N., Toshkodirova, R., Rifky, M., Ayakulov, N., Kurbanov, B., & Samadiy, M. (2024). Recent developments in the extraction of lithium from water resources. Asian Journal of Chemistry, 36(2), 275-280.
[141]. Marza, M., Ferguson, G., Thorson, J., Barton, I., Kim, J.H., Ma, L., & McIntosh, J. (2024). Geological controls on lithium production from basinal brines across North America. Journal of Geochemical Exploration, 257, 107383.
[142]. Amatyakul, P., Siripunvaraporn, W., Rung-Arunwan, T., Vachiratienchai, C., Pirarai, K., & Prommakorn, N. (2023). A decade of successful magnetotelluric surveys for delineating shallow geothermal reservoirs beneath nonvolcanic hot springs in Thailand. Geophysics, 88(5), WB55-WB69.