Document Type : Review Paper

Authors

1 Department of Earth Sciences and Environment, Faculty of Science and Technology, The National University of Malaysia, Malaysia

2 Geological Department, Faculty of Science, University of Zintan, Libya

3 Geothermal Resources SDN BHD, Malaysia

4 Department of Earth Science and Environment, Faculty of Science and Technology, National University of Malaysia, Malaysia

Abstract

More than sixty thermal springs have been detected across Peninsular Malaysia, with about 75% conveniently located in easily accessible areas. The potential for thermal energy growth has been recognized at four hot spring localities: Lojing, Dusun Tua, Ulu Slim, and Sungai Klah. This article analyses Peninsular Malaysia's geothermal development's geological, geochemical, and geophysical research to assess its appropriateness and performance. The geological data provide insights into the structural characteristics and spatial distribution of thermal springs within the studied area. Geochemical studies measure reservoir temperatures, revealing the highest recorded temperature exceeds 189°C. The review shows that the hot springs are derived from a recharge region linked to high-altitude topography, with their source being meteoric water. Several geophysical techniques, such as transient electromagnet (TEM), gravity, land and satellite magnetic, ground penetration radar (GPR), seismic, resistivity, and induced polarization (IP), have been employed to examine the geothermal system in Malaysia. The sole magnetotelluric (MT) investigation at Ulu Slim deviates from this pattern. The source suggests uncertainty regarding accuracy related to station distance, highlighting these concerns. Most studies indicate that magma intrusion is the most likely heat source. To offer a comprehensive understanding of Peninsular Malaysia's geothermal potential, this study reviews previous research and presents a feasible model that incorporates all current facts.

Keywords

Main Subjects

[1]. Liu, L., Yang, L., Shen, L., & Xiao, H. (2023). Research progress and prospect of geothermal resources. Proc, E3S Web of Conferences, 393, 01001.
[2]. Koerniawati, I., Prakoso, L.Y., Putri, R.H., & Khotimah, N. (2023). Geothermal Energy Potential In Supporting National Defense And Economic Sustainability In Developing Countries. Return: Study of Management, Economic and Bussines, 2(3), 260-268.
[3]. IGA Service GmbH. (2014). Best practices guide for geothermal exploration. Bochum University, 194 p.
[4]. Agoubi, B. (2021). Origin, heating process, and groundwater flow system of non-volcanic thermal aquifers in Tunisia. Arabian Journal of Geosciences, 14(5), 369.
[5]. Olasolo, P., Juárez, M.C., Morales, M.P., & Liarte, I.A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133-144.
[6]. Samrock, F., Kuvshinov, A., Bakker, J., Jackson, A., & Fisseha, S. (2015). 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia. Geophysical Journal International, 202(3), 1923–1948.
[7]. Rai, S.M. (2020). Hot water springs (thermal springs) in Nepal: A review on their location, origin, and importance. Journal of Development Innovations, 4(2), 24-42.
[8]. Baioumy, H., Nawawi, M., Wagner, K., & Arifin, M.H. (2015). Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research, 290, 12–22.
[9]. Stober, I., & Bucher, K. (2021). Geothermal systems in high-enthalpy regions. In Geothermal Energy: From Theoretical Models to Exploration and Development. Springer International Publishing, pp. 227-256.
[10]. Tester, J. W., Anderson, B. J., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., ... & Toksoz, M. N. (2006). The future of geothermal energy. Massachusetts Institute of Technology358, 1-3.
[11]. Ho, C. S. (1979). Geothermal survey: Geothermometric measurements of hot springs in Perak and Kedah. Geological Survey of Malaysia, Annual Report1979, 282-288.
[12]. Samsudin, A.R., Hamzah, U., Rahman, A.R., Siwar, C., Mohd Jani, M.F., & Othman, R. (1997). Thermal springs of Malaysia and their potential development. Journal of Asian Earth Sciences, 15, 275-284.
[13]. Chow, W.S., Irawan, S., & Fathaddin, M.T. (2010). Hot springs in Malay Peninsula. Proc, World Geothermal Congress 2010, Bali, Indonesia.
[14]. Jabatan Mineral & Geosains Malaysia (JMG). (2013). Peta taburan air panas Semenanjung Malaysia.
[15]. Baioumy, H. M., Nawawi, M., Wagner, K., & Arifin, M. H. (2014). Geological setting and origin of non-volcanic hot springs in West Malaysia. In 3rd Annual International Conference on Geological & Earth Science (GEOS2014) ), 14-18.
[16]. Arifin, M. H. (2017). Hot springs characterisation and geothermal potential study in peninsula malaysia from geosciences persectives. Universiti Sains Malaysia.
[17]. ThinkGeoEnergy. (2024). ThinkGeoEnergy's top 10 geothermal countries 2023 - power generation capacity (MW). https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2023-power-generation-capacity-mw/
[18]. Department of Statistics Malaysia. (2020). Overview electricity sector in Malaysia.  https://www.st.gov.my/
[19]. Fiffy, H.S., Elia, G., Hizami, H.N., Zulhazman, H., Nordiana, M.N., & Akmar, A.N. (2021). Evaluation on the potential of hot spring as nature tourism attraction in Lojing Highlands, Kelantan, Peninsula Malaysia. Proc, IOP Conference Series: Earth and Environmental Science, 736, 012017.
[20]. Mahamad Rezali, M.I.Z.I. (2009). Design harnessing hot spring's energy system for cocoa beans drying [Master's thesis]. Universiti Teknologi PETRONAS.
[21]. Ramly, F. (2017). Estimation and design of freshwater fish pond using low temperature geothermal sources at Sungai Klah hot springs [Master's thesis]. Universiti Sains Malaysia.
[22]. Metcalfe, I. (2013). Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76, 195–213.
[23]. Hall, R. (2014, November). The origin of Sundaland. In Proceedings Of Sundaland Resources Annual Convention (pp. 17-18).
[24]. Hutchison, C.S., & Tan, D.N.K. (Eds.). (2009). Geology of peninsular Malaysia. University of Malaya and Geological Society of Malaysia, 479 P.
[25]. Searle, M.P., Whitehouse, M.J., Robb, L.J., Ghani, A.A., Hutchison, C.S., Sone, M., ... & Oliver, G.J.H. (2012). Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U–Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 169(4), 489-500.
[26]. Metcalfe, I. (2000). The Bentong–Raub Suture Zone. Journal of Asian Earth Sciences, 18, 691–712.
[27]. Metcalfe, I. (2006). Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1-2), 24-46.
[28]. Ghani, A.A., Lo, C.H., & Chung, S.L. (2013). Basaltic dykes of the Eastern Belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. Journal of Asian Earth Sciences, 77, 127-139.
[29]. Ng, S.W.P., Chung, S.L., Robb, L.J., Searle, M.P., Ghani, A.A., Whitehouse, M.J., ... & Roselee, M.H. (2015). Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Bulletin of the Geological Society of America, 127(1), 1209-1237.
[30]. Quek, L.X., Ghani, A.A., Lai, Y.M., Lee, H.Y., Saidin, M., Roselee, M.H., ... & Zulkifley, M.T.M. (2018). Absolute age evidence of Early to Middle Ordovician volcanism in Peninsular Malaysia. Current Science, 115(12), 2291-2296.
[31]. Quek, L., Lai, Y.M., Ghani, A.A., Roselee, M.H., Lee, H.Y., Iizuka, Y., ... & Jamil, A. (2021). Peninsular Malaysia transitional geodynamic process from Gondwana to Pangaea: New constraints from 500 to 200 Ma magmatic zircon U-Pb ages and Hf isotopic compositions. Gondwana Research, 94, 56-72.
[32]. Jamil, A., Ghani, A.A., Zaw, K., Osman, S., & Quek, L.X. (2016). Origin and tectonic implications of the∼ 200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. Journal of Asian Earth Sciences, 127, 32-46.
[33]. Zhang, C., Hu, S., Zhang, S., Li, S., Zhang, L., Kong, Y., ... & Wang, Z. (2020). Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high-temperature geothermal resources. Renewable Energy, 148, 284-297.
[34]. Zhang, C., Feng, Q., Zhang, L., Qin, S., Jiang, G., Hu, J., ... & Hassan, M. (2022). Characteristics of radiogenic heat production of widely distributed granitoids in western Sichuan, southeast Tibetan Plateau. Lithosphere, 2022(1).
[35]. Pleitavino, M., Carro Pérez, M.E., García Aráoz, E., & Cioccale, M.A. (2021). Radiogenic heat production in granitoids from the Sierras de Córdoba, Argentina. Geothermal Energy, 9(1), 16.
[36]. Liao, D., Feng, D., Luo, J., & Yun, X. (2023). Relationship between radiogenic heat production in granitic rocks and emplacement age. Energy Geoscience, 4, 100157.
[37]. Şener, M. F. (2024). Current status and potentials of enhanced geothermal systems in the Eastern Pontide Orogenic Belt, Turkey. International Journal of Renewable Energy Development, 13(3), 521-531.
[38]. Guillou-Frottier, L., Milesi, G., Roche, V., Duwiquet, H., & Taillefer, A. (2024). Heat flow, thermal anomalies, tectonic regimes and high-temperature geothermal systems in fault zones. Comptes Rendus. Géoscience, 356(S2), 389-421.
[39]. Kennedy, H., Löer, K., Gilligan, A., & Finger, C. (2023). Characterising faults in geothermal fields using surface waves: a numerical study. Proc, EGU General Assembly Conference Abstracts, EGU-5756.
[40]. Pérez-Drago, G., Arsenikos, S., & Piolle, T. (2024, June). Groundwater hydrothermal circulation modeling in crustal fault zones: Geothermal systems uncertainty and risk assessment. Proc, 85th EAGE Annual Conference & Exhibition (including the Workshop Programme), 1-5.
[41]. Harun, Z. (1991). Kajian sesar utama semenanjung Malaysia [Unpublished paper]. Universiti Kebangsaan Malaysia.
[42]. Harun, Z. (1992). Anatomi sesar-sesar utama Semenanjung Malaysia [Doctoral dissertation]. Universiti Kebangsaan Malaysia.
[43]. Balarabe, B. (2021). Structural analysis of aeromagnetic data and digital elevation model for geothermal mineralization potentials of Peninsular Malaysia. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 7(1)
[44]. Rosli, N. A., Anuar, M. N. A., Mansor, M. H., Rahim, N. S. I. A., & Arifin, M. H. (2022). What makes a hot spring, hot? Warta Geologi, 48(1), 29.
[45]. Taillefer, A., Milesi, G., Soliva, R., Monnier, L., Delorme, P., Guillou-Frottier, L., & Le Goff, E. (2021). Polyphased brittle deformation around a crustal fault: A multi-scale approach based on remote sensing and field data on the mountains surrounding the Têt hydrothermal system (Eastern Pyrénées, France). Tectonophysics, 804, 228710.
[46]. Dogan, D.D. (2023). A study on the effects of fault architecture on fluid circulation in the Gediz Graben by the finite volume method. Solid Earth Sciences, 8(2), 146-159.
[47]. Mitjanas, G., Walsh, J. J., Roca, E., Alías, G., Queralt, P., Ledo, J., & Piña-Varas, P. (2024). The importance of structural complexity in the localization of geothermal systems: A case study along the Vallès-Penedès Fault in the Catalan Coastal Ranges (NE Spain). Geothermics116, 102855.
[48]. Jullien-Sicre, A., Travé, A., Guinoiseau, D., Baqués, V., Saint-Bezar, B., Despinois, F., ... & Benedicto, A. (2022). The Geothermal Systems of the Vallès Fault (NE of Spain): Fracture Network Characterization and Weathering Patterns. Proc, International Conference on Mediterranean Geosciences Union, Springer Nature Switzerland, Cham, 49-52.
[49]. Shuib, M.K., Manap, M.A., Tongkul, F., Abd Rahim, I.B., Jamaludin, T.A., Surip, N., ... & Ahmad, Z. (2017). Active faults in Peninsular Malaysia with emphasis on active geomorphic features of Bukit Tinggi region. Malaysian Journal of Geoscience, 1(1), 13-26.
[50]. Lat, C. N. (2002). Reservoir induced seismicity (RIS): A case study from Kenyir Terengganu. In Proceedings of the Geophysical Contributions in the Environmental Studies and Conservation Seminar. Warta Geologi, 28(5).
[51]. Moeck, I.S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882.
[52]. Qian, X., Bai, T., Yu, Y., Mustapha, K.A., Sheldrick, T.C., Gan, C., & Wang, Y. (2023). Multiple stages of continental rifting in Eastern Peninsular Malaysia: New insights from Jurassic–Cretaceous granitoids. Journal of the Geological Society, 180(5), jgs2023-025.
[53]. Gobbett, D. J. (1971). Joint pattern and faulting in Kinta, West Malaysia. Bulletin of the Geological Society of Malaysia, (4).
[54]. Sautter, B., Pubellier, M., Jousselin, P., Dattilo, P., Kerdraon, Y., Choong, C.M., & Menier, D. (2017). Late Paleogene rifting along the Malay Peninsula thickened crust. Tectonophysics, 710, 205-224.
[55]. Burbank, D. W., & Anderson, R. S. (2013). Tectonic geomorphology (2nd ed.). Environmental & Engineering Geoscience, 19(2), 198-200.
[56]. Nazri, A.A., Umor, M.R., Razmi, N.S., Ghazali, M.A., Arifin, M.H., Nadzir, N.S.M., & Simon, N. (2024). Penentuan Zon Sesar di Ulu Bendul, Negeri Sembilan menggunakan Kaedah Keberintangan Geoeletrik dan Mikrostruktur Batuan. Sains Malaysiana, 53(4), 759-768.
[57]. Hochstein, M., & Hunt, T. (1970). Seismic, gravity and magnetic studies, Broadlands geothermal field, New Zealand. Geothermics, 2, 333–346.
[58]. Madon, M. B. H. (1997). Analysis of tectonic subsidence and heat flow in the Malay Basin (offshore Peninsular Malaysia). Annual Geological Conference '97, Kijal, Terengganu. Geological Society of Malaysia, Bulletin, 41, 95-108.
[59]. Hutchison, C.S. (1996). The "Rajang accretionary prism" and "Lupar Line" problem of Borneo. Geological Society, London, Special Publications, 106, 247–261.
[60]. Khoo, T.T., & Tan, B.K. (1983). Geological evolution of peninsular Malaysia. Proc, Workshop on Stratigraphic correlation of Thailand and Malaysia, Geol. Soc. Thailand and Geol. Soc. Malaysia, Bangkok, 1, 253-290.
[61]. Hutchison, C.S. (1977). Granite emplacement and tectonic subdivision of Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 9, 187-207.
[62]. Cobbing, E.J., Mallick, D.I.J., Pitfield, P.E.J., & Teoh, L.H. (1986). The granites of the Southeast Asian tin belt. Journal of the Geological Society, 143(3), 537-550.
[63]. Wagner, K., Nawawi, M., & Baioumy, H.M. (2013). Re-exploring the geothermal potential of west Malaysia. Submitted to Sains Malaysiana.
[64]. Bachik, A.R. (1990). A Preliminary Study on the Water Quality and Flow of Thermal Spring in Malay Peninsula. Geological Survey unpublished report, Ipoh, Malaysia, 170-185.
[65]. Yusoff, I. H. (1994). Geologi am dan kajian mata air panas sekitar Kg. Sungai Rengas dan Kg. Mata Ayer, Machang, Kelantan (Doctoral dissertation, Jabatan Geologi, Universiti Malaya).
[66]. B…Din, N. (1994). Geologi kawasan Lilo Slim Talont dan kajian mata air panas [Master's thesis]. University of Malaya.
[67]. Biro Rundingan & Kembangan. (1994). A study on the feasibility and development potentials of hot springs for tourism in Malaysia. Final report. Ministry of Public Enterprises, Malaysia.
[68]. Yee, L.P. (2008). Hydrogeochemical study of spring discharges in Kajang Semenyih District, Selangor [Master's thesis]. University of Malaya.
[69]. Zahudi, N. A. A. (2013). Geoheritage and geotourism potentials of Jeli hot spring, Jeli (Doctoral dissertation, Faculty of Earth Sciences), Universiti Malaysia Kelantan.
[70]. Sahak, F.N. (2013). Seismic refraction investigation of Jeli hotspring area, Jeli, Kelantan (Doctoral dissertation). Faculty of Earth Science, Universiti Malaysia Kelantan.
[71]. CHOONG, C.M. (2014). Structural history of the Kinta Valley, Perak, Malaysia [Doctoral dissertation]. Universiti Teknologi PETRONAS.
[72]. Aziz, S. N. (2016). General geology and structural analysis of Jeli Hot Spring, Jeli, Kelantan (Doctoral dissertation, Faculty of Earth Science), Universiti Malaysia Kelantan.
[73]. Supie, N.N.A. (2016). General geology and determination depth circulation of Tok Bok Hotspring in Machang Kelantan, (Doctoral dissertation, Faculty of Earth Science), Universiti Malaysia Kelantan.
[74]. Javino, F. (2016). Evolution of geothermal resources in granitic systems. Proc, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. SGP-TR-209.
[75]. Yahya, N. (2017). General geology and resistivity survey of pos hendrop hot spring, Lojing, Gua Musang, Kelantan [Doctoral dissertation]. Universiti Malaysia Kelantan.
[76]. Rahim, N.S.I.B.A. (2020). Geoscience characterisations of hot spring in selected areas in Peninsula Malaysia [Doctoral dissertation]. Universiti Kebangsaan Malaysia.
[77]. Nair, N.S.S. (2021). Geology of Kampung Lawar and Water Quality Assessment of Jeli and Tok Bok Hot Springs [Final Year Project thesis]. Universiti Malaysia Kelantan.
[78]. Samuding, K., Kamarudin, N.A., Sharifodin, M.S.M., Arifin, A., & Mohamad, K. (2016). Application of environmental isotope and hydrogeochemical techniques in investigating the geothermal resources. Proc, R&D Seminar 2016: Research and Development Seminar 2016, Bangi, Malaysia.
[79]. Anuar, M.N.A., Arifin, M.H., Baioumy, H., & Nawawi, M. (2021). A geochemical comparison between volcanic and non-volcanic hot springs from East Malaysia: Implications for their origin and geothermometry. Journal of Asian Earth Sciences, 217, 104843.
[80]. Kipng'ok, J., & Kanda, I. (2012). Introduction to geochemical mapping. Proc, Short Course VII on Exploration for Geothermal Resources. UNU-GTP, GDC and KenGEn, Lake Bogoria and Lake Naivasha, Kenya.
[81]. Piper, A.M. (1994). A geographic procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–928.
[82]. Langelier, W.F., & Ludwig, H.F. (1942). Graphical methods for indicating the mineral character of natural waters. Journal of the American Water Works Association, 34, 335.
[83]. Fournier, R. O. (1973). SILICA IN THERMAL WATERS: LABORATORY GATIONS/AND FIELD INVESTIGATIONS. Proceedings: Hydrogeochemistry1, 122.
[84]. Fournier, R.O., & Truesdell, A.H. (1973). An empirical Na–K–Ca chemical geothermometers for natural waters. Geochimica et Cosmochimica Acta, 37, 1255–1275.
[85]. Ellis, A.J., & Mahon, W.A.J. (1977). Chemistry and geothermal systems. Academic Press, New York, 392 P.
[86]. D'Amore, F., Arnórsson, S., & Arnórsson, S. (2000). Isotopic and chemical techniques in geothermal exploration, development and use. International Atomic Energy Agency, INIS, 31(47).
[87]. Idroes, R., Yusuf, M., Alatas, M., Lala, A., Suhendra, R., & Idroes, G.M. (2018). Geochemistry of hot springs in the IeSeu'um hydrothermal areas at Aceh Besar district, Indonesia. IOP Conference Series: Materials Science and Engineering, 334(1), 012002.
[88]. Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., & Yosa, M. (2019). Characteristic of geothermal system at Semurup manifestation Kerinci: Geological and geochemistry investigation. IOP Conference Series: Earth and Environmental Science, 391(1), 012051.
[89]. Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.
[90]. Marini, L., Bonaria, V., Guidi, M., Hunziker, J. C., Ottonello, G., & Vetuschi Zuccolini, M. (2000). Fluid geochemistry of the Acqui Terme-Visone geothermal area (Piemonte, Italy). Applied Geochemistry, 15, 917-935.
[91]. Bott, W. (1891). The thermal springs of Selangor and Malacca. Journal of the Straits Branch of the Royal Asiatic Society, 24, 43-62.
[92]. Samsudin, A. R., & Hamzah, U. (1994). Geological study of thermal spring in Peninsular Malaysia. Sains Malaysiana, 23(1), 23-32.
[93]. Samsudin, A. R., Hamzah, U., & Rahman, R. A. (1996). Kajian Mata Air Panas di Semenanjung Malaysia (Hot Springs in Peninsular Malaysia). Sains Malaysiana, 25(2), 125-136.
[94]. TNB Research. (2010). Research and development on the potential of geothermal sources for power generation in Peninsular Malaysia. Phase 1: Development of a process and criteria in ranking the potential geothermal sources in Peninsular Malaysia for power generation. Report no.: TNB 187/2009.
[95]. Tuan Salim, T.H.H. (2010). Geochemistry of geothermal hotspring in Perak (CWS). Dissertation, Universiti Teknologi PETRONAS.
[96]. Leh, F.C., Nayan, N., & Baharom, A.A. (2011). Hot springs for a health tourism destination in Perak, Malaysia. Elixir Tourism Management, 39, 5054-5058.
[97]. Abd Rani, N.L. (2014). Assessment of chemicals and radionuclides compositions in hot springs water of Peninsular Malaysia [Doctoral dissertation]. Universiti Teknologi MARA.
[98]. Nazaruddin, D.A. (2015). Study on geoheritage and water quality of Pos Hendrop hot spring, Lojing Highlands, Kelantan, Malaysia. Universiti Malaysia Kelantan.
[99]. Javino, F. (2015). Evaluation for geothermal resources in granitic systems. Proc, World Geothermal Congress 2015, Melbourne, Australia.
[100]. Jabatan Mineral dan Geosains Malaysia. (2016). Laporan Penilaian Sumber Geoterma Bagi Potensi Penjanaan Tenaga Boleh Baharu di Kawasan Ulu Slim, Perak. JMG.PRK (KG) 01/2016.
[101]. Mahzan, A.A.B., Ramli, A.S.B., Abduh, A.S.B.M., Izhar, I.B., Indirakumar, M.Z.B.M.Y., Salih, A.A.M., ... & Wei, O.Q. (2017). Preliminary study of SG Serai Hot Spring, Hulu Langat, Malaysia. Water Conservation and Management, 1(1), 11-14.
[102]. Simon, N., Unjah, T., Yusry, M., & Dzulkafli, M. A. (2019). Physico-chemical characterisation and potential health benefit of the Hulu Langat Hot Spring in Selangor, Malaysia. Sains Malaysiana48(11), 2451-62.
[103]. Kurnia, J.C., Putra, Z.A., Muraza, O., Ghoreishi-Madiseh, S.A., & Sasmito, A.P. (2021). Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia. Renewable Energy, 175, 868-879.
[104]. Madon, M., & Jong, J. (2021). Geothermal gradient and heat flow maps of offshore Malaysia: Some updates and observations. Bulletin of the Geological Society of Malaysia, 71, 159-183.
[105]. Shlof, A.H., Arifin, M.H., Jannes, R.M., Mohamad, A., & Mansor, M.H. (2023). Integration of gravity and geochemistry data to evaluate the geothermal potential in Jasin, Melaka. Proc, EAGE Conference on the Future of Energy-Role of Geoscience in the Energy Transition, 1-6.
[106]. Everts, A.J.W. (2024). Geothermal energy potential of basement hot springs: Case study of Ulu Slim (Perak, Malaysia). Bulletin of the Geological Society of Malaysia, 77, 5-14.
[107]. Wright, P.M., Ward, S.H., Ross, H.P., & West, R.C. (1985). State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50, 2606-2699.
[108]. Kana, J.D., Djongyang, N., Raïdandi, D., Nouck, P.N., & Dadjé, A. (2015). A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44, 87-95.
[109]. Hamzah, U., Samsudin, A.R., & Rafek, A.G (1990). Penentuan Sifat geofizik jasad batuan di sekitar beberapa zon air panas di Malaysia. Laporan Akhir penyelidikan 35/89, Universiti Kebangsaan Malaysia.
[110]. Harun, A.R (1996). Hot springs investigation using the electromagnetic technique in Ladang Sg. Lalang, Hulu Langat, Selangor. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF6/96.
[111]. Razali, M.A.M. (1998). Geophysical investigations of the hot spring occurrences in the Sungei Serai and Kampung Dusun Tua areas, Hulu Langat, Selangor. GeoL. Soc. MaLaYJia, Bulletin, 42, 119-128.
[112]. Mohamed, K.R., Ali, C.A., Jaafar, C.A.R., & Ismail, A. (2001). Pemetaan awalan air panas kawasan Lojing, Gua Musang, Kelantan. Warisan Geologi Malaysia, 4, 147–159.
[113]. Mohamed, K.R., Ali, C.A., Jaafar, C.A.R., & Ismail, A. (2002). Mata air panas, Sungai Mering, Lojing, Gua Musang, Kelantan. Proc, Annual Geological Conference, 257–263.
[114]. Ismail, A., & Ashari, M. A. (1998). Kajian kualitatif mata air panas di negeri Kelantan. Jabatan Penyiasatan Kajibumi Kelantan, Kota Bharu, 22.
[115]. Ismail, A., Jaafar, A.R., & Sulaiman, Z.A. (2002). Siasatan Tinjauan Pemetaan Geotapak Mata Air Panas di Gua Musang, Kelantan. Jabatan Mineral dan Geosains Malaysia. Laporan No.: PWG (KLT) 01/2002.
[116]. Ramli, M.R., & Ho, C.S. (2002). Siasatan mata air panas menggunakan kaedah transient electromagnetic di kawasan Gua Musang, Kelantan. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF3/2002.
[117]. Ramli, M.R., & Harun, A.R. (2003). Siasatan mata air panas HS6 dan HS10 di kawasan Gua Musang, Kelantan menggunakan kaedah transient electromagnet. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF2/2003.
[118]. Ramli, M.R. (2003). Siasatan mata air panas menggunakan kaedah transient electromagnetic di kawasan Ulu Selim, Perak. Jabatan Mineral dan Geosains Malaysia. Laporan No. GF5/2003.
[119]. Zulkifl, N.A.B. (2004). Geologi am Kawasan airpanas kg. la dan sekitarnya, Besut, Terengganu [Master's thesis]. University of Malaya.
[120]. Ahmad, A., & Ayub, D. (2008). Geophysical investigation at The Sungai Klah Hot Springs Park, Felda Sungai Klah, Sungkai, Perak. Universiti Kebangsaan Malaysia
[121]. Bin Abdul Rahim, A.W. (2015). Integrated geophysical exploration of a known geothermal resource: Ulu Slim, Hot Springs, Perak [Dissertation FYP]. Universiti Teknologi PETRONAS.
[122]. Jasme, N. (2016). General geology and subsurface investigation at Jeli Hot Spring, Jeli using resistivity method (Doctoral dissertation, Faculty of Earth Science). Universiti Malaysia Kelantan
[123]. Khalil, A.E., Nawawi, M., & Kamel, R. (2016). Seismic reflection survey at Ayer Hangat site to investigate shallow subsurface structures. IOP Conference Series: Earth and Environmental Science, 29(1), 012023.
[124]. Khalil, A.E., Nawawi, M., Arifin, M.H., Abdullah, F.M., Kayode, J.S., & Usman, N. (2017). Soil investigation at wet world hot spring complex for future development using active multichannel analysis of surface waves. Sains Malaysiana, 46(4), 537-543.
[125]. Arifin, M.H. (2017). Geoelectrical resistivity and induced polarisation (IP) survey for hot springs potential AT PT4298, HSD6112, Mukim Ayer Panas, Jasin, Melaka. Water Jaya Enterprise.
[126]. Kayode, J.S., Arifin, H., Nawawi, M., Khalil, A., & Baioumy, H. (2019). Characterization of the hot spring aquifers at Sungai Klah using potential fields geophysical methods. Proc, EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering, European Association of Geoscientists & Engineers, 1-5.
[127]. Arifin, M.H., Nazer, N.M., Anuar, M.N.A., Baioumy, H., Mansor, M.H., Hussin, A., & Azmi, A. (2020). Effectiveness of the Application of Geoelectrical Resistivity Imaging and Induced Polarisation for Detection of Geothermal Source, Alor Gajah, Melaka, Malaysia. Proc, 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, European Association of Geoscientists & Engineers, 1-5.
[128]. Samsudin, N., Muztaza, N.M., Zakaria, M.T., Adeeko, T.O., Ahmad, F., & Arifin, M.H. (2020). Utilizing geophysical methods for geothermal exploration. Lowland Technology International, 22(1), 086-092.
[129]. Anukwu, G.C., Khalil, A.E., Mohd Nawawi, & Abdellatif M. Younis. (2020). Delineation of shallow structures in the vicinity of Ulu Slim hot spring using seismic refraction and MASW techniques. NRIAG Journal of Astronomy and Geophysics, 9(1), 7-15.
[130]. Yaro, U.Y., Abir, I.A., & Balarabe, B. (2023). Determination of Curie point depth, heat flow, and geothermal gradient to infer the regional thermal structure beneath the Malay Peninsula using de-fractal method. Arabian Journal of Geosciences, 16(1), 84.
[131]. Yaro, U.Y., & Abir, I.A. (2023). Variation in thermal structure with crustal thickness for the crust beneath the Peninsular Malaysia. Journal of Asian Earth Sciences: X, 9, 100146.
[132]. Li, J., Zhang, W., Li, M., & Liu, Y. (2022). A study on magnetotelluric characteristics of magmatic geothermal systems. Energies, 15(24), 9282.
[133]. Neukirch, M., Minakov, A., Argyrou, M., & Pirogova, N. (2022). Geothermal exploration of the Baia Mare Region (Romania) with magnetotellurics – Responses, analysis and 1D models. EGU General Assembly 2022, EGU22-1034.
[134]. Aboud, E., Arafa-Hamed, T., Alqahtani, F., Marzouk, H., Elbarbary, S., Abdulfaraj, M., & Elmasry, N. (2023). The geothermal magmatic system at the northern Rahat volcanic field, Saudi Arabia, revealed from 3D magnetotelluric inversion. Journal of Volcanology and Geothermal Research, 437, 107794.
[135]. Singh, R.K., Weckmann, U., & Srivastava, S. (2024). Magnetotelluric images of the medium enthalpy Bakreswar geothermal province within a granitic gneissic complex, Eastern Indian Peninsula. Geophysical Prospecting, 72(2), 857-881.
[136]. Arafa-Hamed, T., Zaher, M.A., El-Qady, G., Marzouk, H., Elbarbary, S., & Fujimitsu, Y. (2023). Deep heat source detection using the magnetotelluric method and geothermal assessment of the Farafra Oasis, Western Desert, Egypt. Geothermics, 109, 102648.
[137]. Ghanbarifar, S., Ghiasi, S.M., Hosseini, S.H., Abedi, M., Oskooi, B., & Smirnov, M.Y. (2024). Geoelectrical image of the Sabalan geothermal reservoir from magnetotelluric studies. Journal of Applied Geophysics, 224, 105359.
[138]. Siregar, R.N., Nukman, M., Widana, K.S., Harijoko, A., & Sismanto, S. (2024). Radiogenic geothermal systems of Bangka Island, Indonesia: Implications of high heat production and tectonic framework. Energy Geoscience, 5(4), 100306.
[139]. Xu, Z.H., Sun, Z.J., Xin, W., & Zhong, L. (2021). Geothermal resource potential assessment of Erdaobaihe, Changbaishan volcanic field: Constraints from geophysics. Open Geosciences, 13(1), 1053-1063.
[140]. Abdullayev, B., Askarova, N., Toshkodirova, R., Rifky, M., Ayakulov, N., Kurbanov, B., & Samadiy, M. (2024). Recent developments in the extraction of lithium from water resources. Asian Journal of Chemistry, 36(2), 275-280.
[141]. Marza, M., Ferguson, G., Thorson, J., Barton, I., Kim, J.H., Ma, L., & McIntosh, J. (2024). Geological controls on lithium production from basinal brines across North America. Journal of Geochemical Exploration, 257, 107383.
[142]. Amatyakul, P., Siripunvaraporn, W., Rung-Arunwan, T., Vachiratienchai, C., Pirarai, K., & Prommakorn, N. (2023). A decade of successful magnetotelluric surveys for delineating shallow geothermal reservoirs beneath nonvolcanic hot springs in Thailand. Geophysics, 88(5), WB55-WB69.