Document Type : Original Research Paper

Authors

1 1. FEN Bilimleri Institute, Sivas Cumhuriyet University, 58140 Sivas, Turkey. 2. Department of Mining Engineering, Faculty of Engineering Sciences, Omdurman Islamic University, P.O.BOX Khartoum 10257, Omdurman 382, Sudan.

2 Cumhuriyet University

Abstract

This work optimizes coarse particle flotation using microbubble-assisted flotation in a cationic environment created by dodecylamine (DDA). The flotation efficiency of coarse quartz particles (D50 = 495 μm) was investigated through an examination of the interactions between microbubbles (20-30 μm), the cationic environment, and various operational parameters. A systematic approach utilizing factorial and Box-Behnken experimental designs was employed to evaluate the effects of the multiple variables. These variables included the dodecylamine (DDA) concentration, methyl isobutyl carbinol (MIBC) concentration, impeller speed, pulp density, the addition of fine particles, and the presence of microbubbles. The DDA concentration and the impeller speed significantly impacted the coarse particle recovery, while microbubbles increased recovery by 15% under non-optimized conditions; optimization revealed a more negligible difference. The optimized conditions achieved maximum recoveries of 99.47% and 97.88% with and without microbubbles, respectively, indicating the minimal effect when other parameters were optimized. This research work shows that a careful optimization of the flotation parameters can achieve high coarse particle recovery rates, with microbubbles playing a less significant role than anticipated. These findings suggest that optimizing the conventional parameters may be more crucial than the microbubble introduction for enhancing the flotation efficiency of larger particles. The work contributes to our understanding of coarse particle flotation, and provides insights for improving the mineral processing techniques for challenging the particle sizes.

Keywords

Main Subjects