[1]. B.A. Wills, J. Finch (2015). Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery, Butterworth-heinemann.
[2]. S. Farrokhpay, L. Filippov, D. Fornasiero (2021). Flotation of fine particles: A review, Mineral Processing and Extractive Metallurgy Review, 42, 473–483.
[3]. D. Tao (2005). Role of Bubble Size in Flotation of Coarse and Fine Particles - A Review, Sep Sci Technol, 39, 741–760.
[4]. C. Gontijo, D. Fornasiero, J. Ralston (2008). The Limits of Fine and Coarse Particle Flotation, Can J Chem Eng, 85, 739–747.
[5]. G.J. Jameson (2010). Advances in Fine and Coarse Particle Flotation, Canadian Metallurgical Quarterly, 49, 325–330.
[6]. S. Ata, G.J. Jameson (2013). Recovery of coarse particles in the froth phase–A case study, Miner Eng, 45, 121–127.
[7]. D. Xu, I. Ametov, S.R. Grano (2011). Detachment of coarse particles from oscillating bubbles—The effect of particle contact angle, shape and medium viscosity, Int J Miner Process, 101, 50–57.
[8]. A. Hassanzadeh, M. Safari, D.H. Hoang, H. Khoshdast, B. Albijanic, P.B. Kowalczuk (2022). Technological assessments on recent developments in fine and coarse particle flotation systems, Miner Eng, 180.
[9]. S. Nazari, A. Hassanzadeh, Y. He, H. Khoshdast, P.B. Kowalczuk (2022). Recent Developments in Generation Detection and Application of Nanobubbles in Flotation, Minerals 12.
[10]. S. Farrokhpay, I. Ametov, S. Grano (2011). Improving the recovery of low grade coarse composite particles in porphyry copper ores, in: Advanced Powder Technology, pp. 464–470.
[11]. V. Kromah, S.B. Powoe, R. Khosravi, A.A. Neisiani, S.C. Chelgani (2022). Coarse particle separation by fluidized-bed flotation: A comprehensive review, Powder Technol 409.
[12]. S.J. Anzoom, G. Bournival, S. Ata (2024). Coarse particle flotation: A review, Miner Eng, 206, 108499.
[13]. S. Nazari, A. Hassanzadeh (2020). The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles, Powder Technol, 374, 160–171.
[14]. S. Nazari, S. Chehreh Chelgani, S.Z. Shafaei, B. Shahbazi, S.S. Matin, M. Gharabaghi (2019). Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents, Sep Purif Technol 220, 61–68.
[15]. M. Fan, Y. Zhao, D. Tao (2012). Fundamental studies of nanobubble generation and applications in flotation, Separation Technologies for Minerals, Coal, and Earth Resources, 457–469.
[16]. S. Nazari, S.Z. Shafaei, B. Shahbazi, S. Chehreh Chelgani (2018). Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble, Colloids Surf A Physicochem Eng Asp, 559, 284–288.
[17]. D. Tao (2022). Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner Eng, 183, 107554.
[18]. S. Zhou, Y. Li, S. Nazari, X. Bu, A. Hassanzadeh, C. Ni, Y. He, G. Xie (2022). An assessment of the role of combined bulk micro- and nano-bubbles in quartz flotation, Minerals, 12, 944.
[19]. L.O. Filippov, I.V. Filippova, V. V Severov (2010). The use of collector mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates, Miner Eng, 23, 91–98.
[20]. M.C. Fuerstenau, G.J. Jameson, R.-H. Yoon (2007). Froth flotation: a century of innovation, SME.
[21]. A. Vidyadhar, K.H. Rao, I. V Chernyshova, Pradip, K.S.E. Forssberg (2002). Mechanisms of Amine–Quartz Interaction in the Absence and Presence of Alcohols Studied by Spectroscopic Methods, J Colloid Interface Sci, 256, 59–72.
[22]. A.M. Nowosielska, A.N. Nikoloski, D.F. Parsons (2022). Interactions between coarse and fine galena and quartz particles and their implications for flotation in NaCl solutions, Miner Eng, 183, 107591.
[23]. C. Zhou, L. Liu, J. Chen, F. Min, F. Lu (2022). Study on the influence of particle size on the flotation separation of kaolinite and quartz, Powder Technol, 408, 117747.
[24]. E.H. Girgin, S. Do, C.O. Gomez, J.A. Finch (2006). Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell, Miner Eng, 19, 201–203.
[25]. W.X. Weimin Xie, D.H. Dongsheng He, S.L. Shuang Liu, F.C. Fei Chen, H.L. Hongqiang Li (2020). Effect of pH and Dodecylamine Concentration on the Properties of Dodecylamine Two-Phase foam, Journal of the Chemical Society of Pakistan, 42, 495–495.
[26]. G. Fan, L. Wang, Y. Cao, C. Li (2020). Collecting agent–mineral interactions in the reverse flotation of iron ore: A brief review, Minerals, 10, 681.
[27]. B.K. Gorain, J.P. Franzidis, E. V Manlapig (1997). Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 4: Effect of bubble surface area flux on flotation performance, Miner Eng, 10, 367–379.
[28]. G.J. Jameson, A. V Nguyen, S. Ata (2007). The flotation of fine and coarse particles, Froth Flotation: A Century of Innovation, 339–372.
[29]. K.-A. Duffy, K. Runge, E. Tabosa (2013). Strategies for increasing coarse particle flotation in conventional flotation cells.
[30]. R.M. Rahman, S. Ata, G.J. Jameson (2012). The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp, Int J Miner Process, 106–109, 70–77.
[31]. R. Ahmadi, D.A. Khodadadi, M. Abdollahy, M. Fan (2014). Nano-microbubble flotation of fine and ultrafine chalcopyrite particles, Int J Min Sci Technol, 24, 559–566.
[32]. B. Elvers (1991). Ullmann’s encyclopedia of industrial chemistry, Verlag Chemie Hoboken, NJ.
[33]. Y.S. Cho, J.S. Laskowski (2002). Effect of flotation frothers on bubble size and foam stability, Int J Miner Process, 64, 69–80.
[34]. J.G. Wiese, P.J. Harris, D.J. Bradshaw (2010). The effect of increased frother dosage on froth stability at high depressant dosages, in: Miner Eng, pp. 1010–1017.
[35]. S. Nazari, S. Chehreh Chelgani, S.Z. Shafaei, B. Shahbazi, S.S. Matin, M. Gharabaghi (2019). Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents, Sep Purif Technol, 220, 61–68.
[36]. Y. Li, F. Wu, W. Xia, Y. Mao, Y. Peng, G. Xie (2020). The bridging action of microbubbles in particle-bubble adhesion, Powder Technol, 375, 271–274.
[37]. S. Nazari, S.Z. Shafaei, M. Gharabaghi, R. Ahmadi, B. Shahbazi (2018). Effect of frother type and operational parameters on nano bubble flotation of quartz coarse particles, Journal of Mining & Environment, 9, 539–546.
[38]. H. Darabi, S.M.J. Koleini, D. Deglon, B. Rezai, M. Abdollahy (2019). Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies, Miner Eng, 134, 54–64.
[39]. S. Farrokhpay, D. Fornasiero (2017). Flotation of coarse composite particles: Effect of mineral liberation and phase distribution, Advanced Powder Technology, 28, 1849–1854.
[40]. D. Wang, Q. Liu (2021). Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review, Miner Eng, 173.
[41]. A.M. Vieira, A.E.C. Peres (2007). The effect of amine type, pH, and size range in the flotation of quartz, Miner Eng, 20, 1008–1013.
[42]. C. Bazin, M.P. Proulx (2001). Distribution of reagents down a flotation bank to improve the recovery of coarse particles. www.elsevier.nlrlocaterijminpro.
[43]. J. Rubio, A. Azevedo, R.T. Rodrigues, G.R. Olivares (2024). Amine-coated nanobubbles-assisted flotation of fine and coarse quartz, Miner Eng, 218, 108983.
[44]. S. Nazari, A. Hassanzadeh (2020). The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles, Powder Technol, 374, 160–171.
[45]. S. Nazari, S.Z. Shafaei, M. Gharabaghi, R. Ahmadi, B. Shahbazi, A. Tehranchi (2020). New approach to quartz coarse particles flotation using nanobubbles, with emphasis on the bubble size distribution, Int J Nanosci, 19, 1850048.