[1]. Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., & Nelson, P. H. (1978). Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43(3), 588-609.
[2]. Luo, Y., & Zhang, G. (1998). Theory and application of spectral induced polarization. Society of exploration geophysicists.
[3]. Emond, A. M. (2007). Electromagnetic modeling of porphyry systems from the grain-scale to the deposit-scale using the generalized effective medium theory of induced polarization (Doctoral dissertation, Department of Geology and Geophysics, University of Utah).
[4]. Goold, J. W., Cox, L. H., & Zhdanov, M. S. (2007). Spectral complex conductivity inversion of airborne electromagnetic data. In SEG Technical Program Expanded Abstracts 2007 (pp. 487-491). Society of Exploration Geophysicists.
[5]. Zhdanov, M. (2008). Generalized effective-medium theory of induced polarization. Geophysics, 73(5), F197-F211.
[6]. Sharifi, F., Arab-Amiri, A.R., Borner, R.U., Kamkar-Rouhani, A., (2018). Recovering IP effects from 1-D inversion of HEM data: case study from Kervian gold deposite (Iran), in: AEM2018 7th international workshop on airborne electromagnetic.
[7]. Sharifi, F., Arab-Amiri, A. R., Kamkar-Rouhani, A., & Börner, R. U. (2020). Development of a novel approach for recovering SIP effects from 1-D inversion of HEM data: Case study from the Alut area, northwest of Iran. Journal of Applied Geophysics, 174, 103962.
[8]. Kemna, A. (2000). Tomographic inversion of complex resistivity: Theory and application. Der Andere Verlag.
[9]. Boerner, J. H., Herdegen, V., Repke, J. U., & Spitzer, K. (2017). Spectral induced polarization of the three-phase system CO2–brine–sand under reservoir conditions. Geophysical Journal International, 208(1), 289-305.
[10]. Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., ... & Zimmermann, E. (2012). An overview of the spectral induced polarization method for near‐surface applications. Near Surface Geophysics, 10(6), 453-468.
[11]. Madsen, L. M., Fiandaca, G., Auken, E., & Christiansen, A. V. (2017). Time-domain induced polarization–an analysis of Cole–Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion. Geophysical Journal International, 211(3), 1341-1353.
[12]. Bérubé, C. L., Chouteau, M., Shamsipour, P., Enkin, R. J., & Olivo, G. R. (2017). Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils. Computers & Geosciences, 105, 51-64.
[13]. Gurin, G., Ilyin, Y., Nilov, S., Ivanov, D., Kozlov, E., & Titov, K. (2018). Induced polarization of rocks containing pyrite: Interpretation based on X-ray computed tomography. Journal of Applied Geophysics, 154, 50-63.
[14]. Fiandaca, G., Madsen, L. M., & Maurya, P. K. (2018). Re‐parameterisations of the Cole–Cole model for improved spectral inversion of induced polarization data. Near Surface Geophysics, 16(4), 385-399.
[15]. Jackson, D. D., & Matsu'Ura, M. (1985). A Bayesian approach to nonlinear inversion. Journal of Geophysical Research: Solid Earth, 90(B1), 581-591.
[16]. Ivanov, J., Miller, R. D., Xia, J., Steeples, D., & Park, C. B. (2005). The inverse problem of Refraction travel times, part I: Types of Geophysical Nonuniqueness through minimization. Pure and Applied Geophysics, 162, 447-459.
[17]. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139-160.
[18]. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical geology, 35(3), 279-300.
[19]. Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics: The Official Journal of the International Environmetrics Society, 20(6), 621-632.
[20]. Moghadas, D. (2020). One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network. Geophysical Journal International, 222(1), 247-259.
[21]. Hansen, T. M., & Cordua, K. S. (2017). Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—Applied to GPR crosshole traveltime inversion. Geophysical Journal International, 211(3), 1524-1533.
[22]. Shahriari, M., Pardo, D., Kargaran, S., & Teijeiro, T. (2022). Automated machine learning for borehole resistivity measurements. arXiv preprint arXiv:2207.09849.
[23]. Linting, M., Meulman, J. J., Groenen, P. J., & van der Koojj, A. J. (2007). Nonlinear principal components analysis: introduction and application. Psychological methods, 12(3), 336.
[24]. Chen, X., Xia, J., Pang, J., Zhou, C., & Mi, B. (2022). Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations. Geophysical Journal International, 231(1), 1-14.
[25]. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems–A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.
[26]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.
[27]. Mohajjal, M., Eshragh, A., (2008). Geological map of Kervian area. Geology survey of Iran.
[28]. Ghazanfari, M, Fazli Khani, T. & Abbasi, Z. (2010). Report on public gold exploration in the area of Kervian. Geological Survey of Iran.
[29]. Najafi Ghoshebolagh, S., Kamkar Rouhani, A., Arab Amiri, A. R., & Bizhani, H. (2021). An Exploration Model for A Gold Deposit in Kervian Area, Kurdistan Province, Iran, using a Combination of Geophysical Results with Geological Information and Other Exploratory Data. Journal of Mining and Environment, 12(2), 413-424.
[30]. Puzyrev, V. (2019). Deep learning electromagnetic inversion with convolutional neural networks. Geophysical Journal International, 218(2), 817-832.
[31]. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[32]. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. Cambridge university press.
[33]. Sharifi, F., Arab Amiri, A. R., & Kamkar Rouhani, A. (2019). Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data. Journal of Mining and Environment, 10(2), 493-505.
[34]. Thió-Henestrosa, S., & Martín-Fernández, J. A. (2006). Detailed guide to CoDaPack: a freeware compositional software. Geological Society, London, Special Publications, 264(1), 101-118.
[35]. Compositional Data Package, )2022(. University of Girona
[36]. Stacklies, W., Redestig, H., Scholz, M., Walther, D., & Selbig, J. (2016). pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23(9), 1164-1167.
[37]. Dürr, O., Sick, B., & Murina, E. (2020). Probabilistic deep learning: With python, keras, and tensorflow probability. Manning Publications.