Document Type : Original Research Paper

Authors

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Considering the effect of fractures in increasing hydrocarbon recovery, the study of reservoir rock fractures is of particular importance. Fractures are one of the most important fluid flow paths in carbonate reservoirs. Image logs provide the ability to detect fractures and other geological features and reservoir layers. In this study, two approaches were used to detect fractures using FMI image log in two wells A and B located in one of oilfields in southwest of Iran. In the first stage, the correction and processing of the FMI raw data were carried out to identify the number and position of fractures, as well as the dip, extension, classification, and density of fractures. In the second step, by considering that the fractures possess the edges in the FMI images, various edge detection filters such as Prewitt, Canny, Roberts, LOG, Zero-cross and Sobel were applied on the image data, and then, their performances for identification of fractures were compared. Finally, the automatic identification of fractures was done by applying the Hough transform algorithm and the results showed that Canny algorithm was the best option to perform Hough transformation. The comparison of the efficiency of the above-mentioned edge detection filters for identification of fractures, and more importantly, the automatic identification of fractures using the Hough transform algorithm can be considered as the novelty of this research work.

Keywords

Main Subjects

[1]. Roehl, P. O., & Choquette, P. W. (Eds.). (2012). Carbonate petroleum reservoirs. Springer Science & Business Media.
[2]. McQuillan, H. (1985). Fracture-controlled production from the Oligo-Miocene Asmari Formation in Gachsaran and Bibi Hakimeh fields, southwest Iran. In Carbonate petroleum reservoirs (pp. 511-523). New York, NY: Springer New York.‏
[3]. Martinez, L. P., Hughes, R. G., & Wiggins, M. L. (2002). Identification and characterization of naturally fractured reservoirs using conventional well logs. The University of Oklahoma23.‏
[4]. Zohreh, M., Junin, R., Bakhtiary, H. A., Poor, S. T., Mohamadian, R., & Movahed, A. A. (2016). The evaluation of borehole imaging result comparing with cores in Sarvak fractured and non-fractured reservoir. Arabian Journal of Geosciences9, 1-12.‏
[5]. Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G. H., & Moallemi, S. A. (2012). Comparison of electrical image log with core in a fractured carbonate reservoir. Journal of Petroleum Science and Engineering86, 289-296.‏
[6]. Kherroubi, J. (2008, December). Automatic extraction of natural fracture traces from borehole images. In 2008 19th International Conference on Pattern Recognition (pp. 1-4). IEEE.‏
[7]. Movahed, Z., Junin, R., Amiri Bakhtiari, H., Safarkhanlou, Z., Movahed, A. A., & Alizadeh, M. (2015). Introduction of sealing fault in Asmari reservoir by using FMI and RFT in one of the Iranian naturally fractured oil fields. Arabian Journal of Geosciences8, 10919-10936.‏
[8]. Schlumberger (1994) FMI fullbore formation microimager. Schlumberger educational services.
[9]. Rider, M. (1996). The geological interpretation of well logs (Second edi). Caithness: Whittles Publishing.‏
[10]. Serra O (1989) Formation micro scanner image interpretation. Schlumberger education services.
[11]. Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics229(3-4), 211-238.‏
[12]. Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science304(1), 1-20.‏
[13]. Mottie H, (2003) Geology of Iran (Zagros stratigraphy). Geological Survey of Iran.
[14]. Mehrabi, H., Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., & Navidtalab, A. (2014). Depositional environment and sequence stratigraphy of the Upper Cretaceous Ilam Formation in central and southern parts of the Dezful Embayment, SW Iran. Carbonates and Evaporites29, 263-278.‏
[15]. Esrafili‐Dizaji, B., & Rahimpour‐Bonab, H. (2013). A review of permo‐triassic reservoir rocks in the zagros area, sw iran: influence of the qatar‐fars arch. Journal of Petroleum Geology36(3), 257-279.‏
[16]. Aadnoy, B. S. (1990). Inversion technique to determine the in-situ stress field from fracturing data. Journal of Petroleum Science and Engineering4(2), 127-141.‏
[17]. Khoshbakht, F., Memarian, H., & Mohammadnia, M. (2009). Comparison of Asmari, Pabdeh and Gurpi formation's fractures, derived from image log. Journal of Petroleum science and Engineering67(1-2), 65-74.
[18]. Schlumberger (2002) Borehole geology, geomechanics and 3D reservoir modeling (FMI). SMP-5822.
[19]. Fossen, H. (2010). Structural Geology, Cambridge University press, New York, first edition.
[20]. Gonzalez, R., woods, R., Steven, L. (2004) Eddins, Digital image processing using MATLAB, Pearson Prentice Hall.
[21]. Al-Amri, S. S., & Kalyankar, N. V. (2010). Image segmentation by using threshold techniques. arXiv preprint arXiv:1005.4020.‏
[22]. Li J (2003) A wavelet approach to edge detection (Doctoral dissertation, Sam Houston State University).
[23]. Bhadauria, H. S., Singh, A., & Kumar, A. (2013). Comparison between various edge detection methods on satellite image. International Journal of Emerging Technology and Advanced Engineering3(6), 324-328.‏
[24]. Gonzalez, R. C., & Woods, R. E. (1992). Digit Image Processing. ion, Bost on, MA: Addison-Wesley Longman P ublishing Company.‏
[25]. Muthukrishnan, R., & Radha, M. (2011). Edge detection techniques for image segmentation. International Journal of Computer Science & Information Technology3(6), 259.‏
[26]. Mathur, D., & Mathur, D. P. (2016). Edge Detection Techniques In Image Processing With Elaborative Approach Towards Canny. Computer Science Department, Lachoo Memorial College Of Science & Technology.‏
[27]. Sobel, I. E. (1970). Camera models and machine perception. stanford university.‏
[28]. Liu, X., Duan, Z., Wang, X., & Xu, W. (2016). An image edge detection algorithm based on improved wavelet transform. International Journal of Signal Processing, Image Processing and Pattern Recognition9(4), 435-442.‏
[29]. Maini, R., & Aggarwal, H. (2009). Study and comparison of various image edge detection techniques. International journal of image processing (IJIP)3(1), 1-11.‏
[30]. Haralick, R. M. (1987). Digital step edges from zero crossing of second directional derivatives. In Readings in computer vision (pp. 216-226). Morgan Kaufmann.‏
[31]. Pratt, W.K. (1991). Digital Image Processing, 2nd Ed. New York: John Wiley& Sons.
[32]. Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. Bmj312(7047), 1654.‏
[33]. Huang, Y., & Wang, S. (2008, May). Multilevel thresholding methods for image segmentation with Otsu based on QPSO. In 2008 Congress on Image and Signal Processing (Vol. 3, pp. 701-705). IEEE.‏.
[34]. da Fontoura Costa, L., Ben-Tzvi, D., & Sandler, M. (1990, March). Performance improvements to the Hough transform. In UK IT 1990 Conference (pp. 98-103). IET.‏
[35]. Assous, S., Elkington, P., Clark, S., & Whetton, J. (2014). Automated detection of planar geologic features in borehole images. Geophysics79(1), D11-D19.‏
[36]. Shafiabadi, M., Kamkar-Rouhani, A., Riabi, S. R. G., Kahoo, A. R., & Tokhmechi, B. (2021). Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles76, 10.‏
[37]. Shafiabadi, M., Kamkar-Rouhani, A., & Sajadi, S. M. (2021). Identification of the fractures of carbonate reservoirs and determination of their dips from FMI image logs using Hough transform algorithm. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles76, 37.‏
[38]. Wang, W., & Wang, X. N. (2010, May). Micro rock fracture image acquisition and processing. In 2010 2nd International Workshop on Intelligent Systems and Applications (pp. 1-4). IEEE.‏
[39]. He, C., & Wang, W. (2010, June). A PCNN-based edge detection algorithm for rock fracture images. In 2010 Symposium on Photonics and Optoelectronics (pp. 1-4). IEEE.‏
[40]. Seifallahi, M., Tokhmechi, B., Soleimani, A., & Fard, A. A. (2013). A novel methodology for fracture extraction from borehole image logs. In The First International Conference Oil, Gas, Petrochemical And Power Plant, Tehran: SID (Vol. 7).‏
[41]. Wang, W., Liao, H., & Huang, Y. (2007, August). Rock fracture tracing based on image processing and SVM. In Third International Conference on Natural Computation (ICNC 2007) (Vol. 1, pp. 632-635). IEEE.‏
[42]. Zhang, W., Wu, T., Li, Z., Li, Y., Qiu, A., & Shi, Y. (2021). Automatic detection of fractures based on optimal path search in well logging images. Journal of Sensors2021(1), 5577084.‏