Document Type : Original Research Paper

Authors

1 Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Geology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran

3 Department of Geology, Meshkinshahr Branch, Islamic Azad University, Meshkinshahr, Iran

Abstract

The Plio-quaternary sub-volcanic domes are the products of magmatism in the Turkish-Iranian plateau in the collision zone between Eurasia and Arabia. Intermediate-felsic volcanic rocks are found 50 km west of Ardabil. These volcanic domes make a significant part of the Sabalan volcanic, a Plio-quaternary stratovolcano in northwest Iran. The igneous rocks (adakitic) include dacite, trachyte, andesite, trachy-andesite, and trachydacite, associated with ignimbrite and pyroclastic equivalents. They mainly comprise phenocrysts and a microcrystalline groundmass of pyroxene, amphibole, and plagioclase, with biotite and titanomagnetite. These rocks are enriched in Light Rare Earth Elements (LRREs) and Large Ion Lithophile Elements (LILEs) and depleted from Heavy Rare Earth Elements (HRREs) and High-Field Strength Elements (HFSEs). In these rocks, the SiO2 content is 56-66 wt%, Na2O is > 3.5 wt%, Al2O3  > 15 wt%, Yb < 0.2 ppm, and Y < 7 ppm, which are typical of high silica adakitic rocks. The initial ratios of the 143Nd/144Nd range from 0.5127 to 0.5129 and the initial ratios of 87Sr/86Sr for the adakites range from 0.7035 to 0.7060, reflecting the heterogeneity of the mantle and different degrees of crystallization. These geological, geochemical, and Sr, and Nd isotopic data indicate that these rocks belong to the post-collisional adakite type, and are derived from low-degree partial melting of a subduction-metasomatized continental lithospheric mantle (eclogite or amphibolite garnet). In the studied area, mineralization related to Plio-quaternary adakitic rocks has not been observed.

Keywords

Main Subjects

[1]. Martin, H., Smithies, R., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), 1-24.
[2]. Zhang, P. Z., Wen, X. Z., Shen, Z. K.,  & Chen, J. h. (2010). Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual review of earth and planetary sciences, 38, 353-382.
[3]. Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3-4), 433-447.
[4]. Ghorbani, M. R., & Bezenjani, R. N. (2011). Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc, 20, 188-202
[5].  Azizi, H., Asahara, Y., Tsuboi, M., Takemura, K., & Razyani, S. (2014). The role of heterogenetic
mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Chemie der Erde-Geochemistry, 74, 87-97.
[6]. Delavari, M., Amini, S., Schmitt, A. K., McKeegan, K. D., & Harrison T. M. (2014). U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 200, 197-211.
[7]. Rossetti, F., Nasrabady, M., Theye, T., Gerdes, A., Monié, P., Lucci, F.,  & Vignaroli, G. (2014). Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran). GSA Bulletin, 126, 317-343.
[8]. Omrani, H. (2018). Island-arc and active continental margin adakites from the Sabzevar zone, Iran. Petrology, 26, 96-113.
[9]. Castillo, P. R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin, 51, 257-268.
[10]. Şengör, A. M. C., & Kidd, W. S. F. (1979). Post-collision tectonics of the Turkish and Iranian plateau and companions with Tibet. Tectonophysics, 55, 361-376.
[11]. Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Şaroğlu, F., & Şengör, A. M. C. (1986). Shortening of continental lithosphere: The neotectonics of Eastern Anatolia a young collision zone. Coward, M., Ries, A.(Ed.). Collision Tectonics. Special Publication of the Geological Society. London, 19, 3-36.
[12]. Dilek, Y., & Altunkaynak, Ş. (2009). Geochemical and temporal evolution of Cenozoic magmatism in Western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society of London Special Publication,  311, 213–233.
[13]. Kheirkhah, M., Allen, M. B.  & Emami. M. (2009). Quaternary syn-collision magmatism from the Iran/Turkey borderlands, Journal of Volcanology and Geothermal Research, 182(1-2), 1–12.
[14]. Azizi, H., & Tsubo, M. (2021). The Van Microplate: A New Microcontinent at the Junction of Iran, Turkey, and Armenia. Frontiers in Earth Science, 8.
[15]. Allen, M. B., Kheirkhah, M., Neill, I., Emami, M. H., & McLeod, C. L. (2013). Generation of arc andwithin-plate chemical signatures in collision zone magmatism: quaternary lavas from kurdistan province, Iran. Journal of Petrology, 54(5), 887-911.
[16]. Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S, Khatib, M.M., & Iizuka, Y. (2013). Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162(24), 70-87.
[17]. Ghalamghash, J., Schmitt, A.K., & Chaharlang, R. (2019). Age and compositional evolution of Sahand volcano in the context of postcollisional magmatism in northwestern Iran: evidence for time transgressive
magmatism away from the collisional suture. Lithos, 344–345, 265–279.
[18]. Lustrino, M., Salari, G., Rahimzadeh, B., Fedele, L., Masoudi, F., & Agostini, S. (2021). Quaternary
melanephelinites and melilitites from Nowbaran (NW Urumieh-Dokhtar Magmatic Arc, Iran): origin of ultrabasic-ultracalcic melts in a post-collisional setting. Journal of Petrology, 62, 1-31.
[19]. Fedele, L., Mehdipour Ghazi., J., Agostini, S., Ronca, S., Innocenzi, F., & Lustrino, M. (2023). Concurrent adakitic and non-adakitic Late Miocene-Quaternary magmatism at the Sahand volcano, Urumieh-Dokhtar Magmatic Arc (NW Iran). Lithos, 458–459, 107344.
[20]. Omrani, H., Michaeli, R. & Moazzen, M. (2013). Geochemistry and petrogenesis of the Gasht peraluminous granite, western Alborz Mountains, Iran. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 268/2, 175–189.
[21]. Omrani, H., Moazzen, M., Oberhänsli, R., Tsujimori, T., Bousquet, R. & Moayyed, M. (2013). Metamorphic history of glaucophane- paragonite-zoisite eclogites from the Shanderman area, northern Iran. Journal of Metamorphic Geology, 31, 791-812.
[22]. Omrani, H., Moazzen, M., Oberhänsli, R.,  & Moslempour, M. E. (2017). Iranshahr blueschist: subduction of the inner Makran oceanic crust. Journal of Metamorphic Geology, 35(4).
[23]. Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K., & Rezaeian, M. (2016). Lithospheric structure beneath NW Iran using regional and teleseismic travel-time tomography. Physics of the Earth and Planetary Interiors, 253, 97-107.
[24]. Faridi, M., Nazari, H., Burg, J. P., Haghipour, N., Talebian, M., Ghorashi, M., & Sahebari, S S. (2019). Structural Characteristics, Paleoseismology and Slip Rate of the Qoshadagh Fault, Northwest of Iran. Geotectonics,53(2), 280-297.
[25]. Moradi, A. S., Hatzfeld, D.,  & Tatar, M. (2011). Microseismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics, 506(1-4), 22-30.
[26]. Azad, S. S., Philip, H., Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., & Lamothe, M. (2015). Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640, 20-38.
[27]. Dilek, Y., Imamverdiyev, N., & Altunkaynak, Ş. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4-6), 536-578.
[28]. Ghalamghash, J., Mousavi, Z., Hassanzadeh, J., & Schmitt, A. K. (2016). Geology, Zircon geochronology and petrogenesis of Sabalan Volcano: northwest Iran. Journal of Volcanology and Geothermal Research, 327, 192–207.
[29]. Ghalamghash, J., Mousavi, S.Z., & Khalatbari Jafari, M. (2022). Thermobarometry and petrogenesis of Sabalan volcanic rocks: based on mineral chemistry. In Persian. Researches in Earth Sciences, 13, 26–43.
[30]. Verdel. C., Wernicke, B.P., Hassanzadeh, J.,  & Guest, B. (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3).
[31]. Mason, J. A., Jacobs, P. M., Hanson, P. R., Miao, X., & Goble, R. J. (2003). Sources and paleoclimatic significance of Holocene Bignell loess, central Great Plains, USA. Quaternary Research, 60(3), 330-339.
[32]. Didon, J., & Gemain, Y. M. (1976). Le Sabalan, volcan plio-quaternaire de l'Azerbaidjan oriental (Iran): étude géologique et pétrographique de l'édifice et de son environnement régional. Universite Scientifique et Médicale de Grenobl.
[33]. Shahbazi Shiran, H. (2013). Petrogenesis of Quaternary Shoshonitic Volcanism in NE Iran (Ardabil): Implication for Postcollisional Magmatism. Journal of Geological Research, 1-12.
[34]. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of
volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3), 745-750.
[35]. Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of petrology, 48(12), 2341-2357.
[36]. Irvine, T. N., & Baragar, W. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5): 523-548.
[37]. Peccerillo. A., & Taylor, S. R. (1976). Geochemistry of Eocene Calc–alkaline volcanic rocks from the Kastamonu area. Northern Turkey Contrib, Mineral Petrology, 58(1), 63–8.
[38]. Sun, S. S. & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, 42(1), 313-345.
[39]. Drake, M. J., & Weill, D. F. (1975). Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochimica et Cosmochimica Acta, 39(5), 689-712.
[40]. Weill, D. F., & Drake, M. J. (1973). Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science, 180(4090), 1059-1060.
[41]. Lai, S., Qin, J., Li, Y., Li, S., & Santosh, M. (2012). Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 47, 216-230.
[42]. Irving, A. J.,  & Frey, F. A. (1978). Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42(6), 771-787.
[43]. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Yu, B. B., Qi,  Q., Wang, T., Feng, G. Y., & Coulson, I. M. (2009). Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong province, eastern China: constraints on petrogenesis and implications. Journal of Asian Earth Sciences, 35(5), 445-458.
[44]. Kepezhinskas, P. K., Defant, M. J., & Drummond, M. (1995). Na metasomatism in the island-arc mantle by slab melt–peridotite interaction: evidence from mantle interaction-evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology, 36, 1505–1527.
[45]. Defant, M.J.,  Drummond, M.S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. nature, 347(6294), 662-665.
[46]. Fraser, G., Ellis, D., & Eggins, S. (1997). Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25, 607-610.
[47]. Davidson, J., Turner, S., Handley, H., Macpherson, C., & Dosseto, A. (2007). Amphibole spong in arc crust?. Geology, 35, 787-790.
[48]. Castillo, P.R. (2012). Adakite petrogenesis. Lithos ,134135, 304–316.
[49]. Castillo, P. R., Janney, P. E., & Solidum, R. U. (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134, 33-51.
[50]. Defant, M. J., & Kepezhinskas, P. (2001). Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6), 65-69.
[51]. Drummond, M. S., Defant, M. J. & Kepezhinkas, P. K. (1996). Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2), 205-215.
[52]. Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429.
[53]. Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24.
[54]. Richards, J. P., & Kerrich, R. (2007). Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic geology, 102(4), 537-576.
[55]. Beate, B., Monzier, M., Spikings, R., Cotton, J., Silva, J., Bourdon, E.,  & Eissen, J. P. (2001). Mio–Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth and Planetary Science Letters, 192(4), 561-570.
[56]. Smith, D. R.,  & Leeman, W. P. (1987). Petrogenesis of Mount St. Helens dacitic magmas. Journal of Geophysical Research: Solid Earth, 92(B10), 10313-10334.
[57]. Azizi, H., & Moinevaziri, H. (2009). Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47(4), 167-179.
[58]. Rapp, R.P., Watson, E.B.,  Miller, C.F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4), 1-25.
[59]. Wang, X. L., Shu, X. J., Xu, X., Tang, M., & Gaschnig, R. (2012). Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the eastern Jiangnan orogen, southern China. Journal of Asian Earth Sciences, 61, 243-256.
[60]. Breeding, C. M., Ague, J. J., & Bröcker, M. (2004). Fluid-metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas. Geology, 32(12), 1041–1044.
[61]. Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L., & Zhang, R. S. (2015). Are continental “adakites” derived from thickened or foundered lower crust?, Earth and Planetary Science Letters, 419, 125-133.
[62]. Dai, H.-K., Zheng, J., Zhou, X., Griffin, W.L. (2017). Generation of continental adakitic rocks: Crystallization modeling with variable bulk partition coefficients. Lithos, 272–273, 222– 231.
[63]. Deng, J., Yang, X., Qi, H., Zhang, Z. F., Mastoi, A. S. & Sun, W. (2017). Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines: Implication for partial melting of the paleo-Pacific Plate. Ore Geology Reviews, 88, 251-269.
[64]. Karsli, O., Dokuz, A., Uysal, İ., Aydin, F., Kandemir, R., & Wijbrans, J. (2010). Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114, 109-120.
[65]. Kolb, J., Dziggel, A., & Schlatter, D. M. (2013). Gold occurrences of the Archean North Atlantic craton, southwestern Greenland: a comprehensive genetic model. Ore Geology Reviews,. 54, 29–58.
[66]. Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., & Bai, Z. H. (2006). Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos, 89(3-4), 424-446.
[67]. Zhou, R. J., Chen, G. X., Li, Y., Zhou, C. H., Gong, Y., He, Y. L.,. & Li,  X. G. (2005). Research on active faults in Litang-Batang region, Western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm. Seismol. Geol. 1 (01), 31–43.
[68]. Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong X. L., & Ma, J. L. (2006). Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: Implications for the genesis of porphyry copper mineralization.  Journal of Petrology, 47(1), 119–144.
[69]. Arculus, R. J. (2003). Use and abuse of the terms calcalkaline and calcalkalic. Journal of petrology, 44(5), 929-935.
[70]. Münker, C., Wörner, G., Yogodzinski, G., & Churikova, T. (2004). Behaviour of high field strength elements in subduction zones: Constraints from Ka-mchatka–Aleutian arc lavas. Earth and Planetary Science Letters, 224,  275–293.
[71]. Ding, X., Lundstrom, C., Huang, F., Li, J., Zhang, Z. M., Sun, X. M., Liang, J. L., & Sun, W. D. (2009). Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6). 473-501.
[72]. Foley, S., Tiepolo, M., & Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature, 417,  837–840.
[73]. Moyen, J. F. (2009). High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos,
112, 556-574.
[74]. Nagel, T. J., Hoffmann, J. E., & Münker, C. (2012). Generation of Eoarchean  tonalitic-trondhjemitic-granodioritics from thickened mafi c arc crust: Geology, 40, 375–378.
[75]. Hoffmann, J. E., Munker, C., Polat, A., Rosing, M. T., & Schulz, T. (2011). The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Acta, 75, 6610-6628
[76]. Kay, S. M., & Mpodozis, C. (2001). Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11(3).
[77]. Gao, Y., Yang, Z., Santosh, M., Hou, Z., Wei, R., & Tian, S. (2010). Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4), 651-663.
[78]. Wang, Q., Wyman, D. A., Zhao, Z. H., Xu, J. F., Bai, Z. H., Xiong, X. L., & Chu, Z. Y. (2007). Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2), 42-64. 
[79]. Zhang, Y. X., Tang, X. C., Zhang, K. J., Zeng, L., & Gao, C. L. (2014). U–Pb and Lu–Hf isotope systematics of detrital zircons from the Songpan–Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth. International Geology Review, 56(1), 29-56.
[80]. Zhu, J. C., Wang, R. C., Zhang, P. H., Xie, C. F., Zhang, W. L., Zhao, K. D., Xie, L., Yang, C., Che, X. D., Yu, A., & Wang, L. B. (2009). Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Science in China Series D: Earth Sciences,52(9), 1279–1294.
[81]. Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y.,  Mo, X. X. (2004). Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155.
[82]. Zhao, X. B., Xue, C. J., Seltmann, R., Dolgopolova, A., Andersen, J. C. O., & Zhang, G. Z. (2020). Volcanic–plutonic connection and associated Au-Cu mineralization of the Tulasu ore district, Western Tianshan, NW China: Implications for mineralization potential in Palaeozoic arc terranes. Geological Journal, 55(3), 2318–2341.
[83]. O’Neill, H. S. C., & Palme, H., (1998). Composition of the silicate Earth: Implications for accretion and core formation. In: Jackson, I. (Ed.), The Earth’s Mantle: Structure, Composition, and Evolution—The Ringwood Volume. Cambridge University Press, Cambridge, 1, 3–126.
[84]. Yang, W. G., Zhong, Y., Zhu, L. D., Xie, L., Mai, Y. M., Li, N., Zhou, Y., Zhang, H. L., Xia, Tong, X., & Feng, W. N. (2022). The Early Cretaceous tectonic evolution of the Neo-Tethys: constraints from zircon U–Pb geochronology and geochemistry of the Liuqiong adakite, Gongga, Tibet. Geological Magazine, 159(10), 1-16.
[85]. Ousta, S. h., Ashja-Ardalan, A., Yazdi, A., Dabiri, R., & Arian, M. A. (2024). Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin, Geopersia, 14 (1), 89-111.  https://doi.org/10.22059/geope.2023.364334.648729
[86]. Guan. Q., Zhu, D. C., Zhao, Z. D., Dong, G. C., Zhang, L. L., Li, X. W., Liu, M., Mo, X. X., Liu, Y. S., & Yuan, H. L. (2012). Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21, 88-99.
[87]. Liu, J. N., Feng, C. Y., Qi, F., Li, G. C., Ma, S. C., & Xiao, Y. (2012). SIMS zircon U–Pb dating and fluid inclusion studies of Xiadeboli Cu–Mo ore district in Dulan County, Qinghai Province, China Acta Petrology. Sin 28 (2), 679-690.
[88]. Wang Q, McDermott F, Xu J. f., Bellon, H.,  Zhu, Y.T.  (2005). Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6), 465-468.
[89]. Hao, L. L., Wang, Q., Wyman, D. A., Ou, Q., Dan, W., Jiang, Z. Q., Wu, F. Y., Yang, J. H., Long, X. P., & Li, J. (2016). Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245, 223-242.
[90]. Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q., Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N., & Guo, H. F. (2014). Petrogenesis of the Early Eocene adakitic rocks in the Nagpuri area, southern Lhasa: partial melting of thickened lower crust during slab break-of and implications for crustal thickening in southern Tibet. Lithos, 196–197, 321–338.
[91]. Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Li, X. H., Lee, H. Y., Lin, T. H., & Chiu, H. Y. (2016). New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos, 264, 348–359.
[92]. Baumann, A., Spie,s O., & Lensch, G.  (1983). Strontium isotopic composition of post ophiolitic Tertiary volcanics between kashmar, Sabzevar and Quchan/ NE Iran. Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran. Report N 51.
[93]. Spies, O., Lensch, G., & Mihm, A. (1983). Geochemistry of the post-ophiolitic Tertiary volcanic between Sabzevar and Quchan/NE-Iran. Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran. Report N 51.
[94]. Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacifc ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132.
[95]. Rapp, R. P., Watson, E. B., & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research, 51, 1-25. 
[96]. Zindler, A. & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571.
[97]. Defant, M. J., Jackson, T. E., Drummond, M. S., DeBoer, J. Z., Bellon, H., Feigenson, M. D., Maury, R. C., & Stewart, R. H. (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149(4), 569-579.
[98]. Asadi. S., Moore. F., & Zarasvandi, A. (2014). Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138, 25-46.
[99]. Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., & Murata, M. (2016). Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geology, 72, 323-342.
[100]. Atherton, M. P., & Petford, N. (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, 144-146.
[101]. Wang, H., Fu, B., Xu, Z., Lu, X., Lu, J., Li, H., Qu, W., Yang, X., Chen, W., & Zhang, J. (2015). Geology, geochemistry, and geochronology of the Wangjiazhuang porphyry–breccia Cu (–Mo) deposit in the Zouping volcanic basin, eastern North China Block. Ore Geology Reviews, 67, 336-353.
[102]. Mousavi, S. Z., Darvishzadeh, A., Ghalamghash, J., Abedini, M. V. (2014). Volcanology and geochronology of Sabalan volcano, the highest stratovolcano in Azerbaijan region, NWIran. Nautilus, 128, 85-98.
[103]. Maury, R. C., Sajona, F. G., Pubellier, M., Bellon, H., & Defant, M. J. (1996). Fusion de la croute oceanique dans les zones de subduction/collision recentes; l'exemple de Mindanao (Philippines). Bulletin de la Société géologique de France, 167(5), 579-595.
[104]. Morris, P.A. (1995). Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5), 395-398.
[105]. Brophy, J. G., & Marsh, B. D. (1986). On the origin of high-alumina arc basalt and the mechanics of melt extraction: Journal of Petrology, 27(4), 763-789.
[106]. Johnston, A. D. (1986). Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands: implications for the origin of island arcs and tonalite-trondhjemite. Contrib Mineral Petrology, 92, 368-382.
[107]. Chung, S. L., Liu, D., Ji, J., Chu, M. F., Lee, H. Y., Wen, D. J., & Zhang, Q. (2003). Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021-1024.
[108]. Kay, R. W., & Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219, 177-189.
[109]. Kay, R. W.,  & Kay, S. M. (2002). Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3), 303-311.
[110]. Kay, S. M., Godoy, E., & Kurtz, A. (2005). Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin, 117(1-2), 67-88.
[111]. Kay, S. M., Mpodozis, C., Ramos, V. A.,  Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33 S). Geological Society of America Special Paper, 265, 113-137.
[112]. Yumul, G. P., Dimalanta, C., Bellon, H., Faustino, D. V., De Jesus. J. V., Tamayo,  R. A., & Jumawan, F. T. (2000). Adakitic lavas in the Central Luzon back‐arc region, Philippines: Lower crust partial melting products? Island Arc, 9(4), 499-512.
[113]. Macpherson, C. G., Dreher, S. T., & Thirlwall, M. F. (2006). Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4), 581-593.
[114]. Richards, J. R., & Kerrich, R. (2007). Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102, 537-576.
[115]. Rooney, T. O., Franceschi, P., & Hall, C. M. (2011). Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contributions to mineralogy and petrology, 161(3), 373-388.
[116]. SellÃ, D., Dungan, M., Langmuir, C., & Leeman, W. (2007). Adakitic Dacites Formed by Intracrustal Crystal Fractionation of Water-rich Parent Magmas at Nevado de Longavi Volcano (36 {middle dot} 2 {degrees} S; Andean Southern Volcanic Zone, Central Chile). Journal of petrology, 48(11).
[117]. Hidalgo, P. J., & Rooney, T. O. (2010). Crystal fractionation processes at Baru volcano from the deep to shallowcrust.Geochemistry,Geophysics,Geosystems,11(12).
[118]. Hidalgo, P,J., & Rooney, T.O. (2014). Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano. Contributions to mineralogy and petrology, 168(3), 1-19.
[119]. Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., (2006). Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letter 243, 581-593.
[120]. Nakamura, H., & Iwamori, H. (2013). Generation of adakites in a cold subduction zone due to double subducting plates. Contributions to mineralogy and petrology, 165(6), 1107-1134.
[121]. Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433-447.
[122]. Amel ,N., Jalili Ghareh Ghaye, V., Hajialioghli, R.,  & Moayyed, M. (2015). Petrogenesis of adakitic  Plio-Quaternary post collision rocks, north of Sahand volcano (NW of Iran). Iranian Journal of Petrology, 6(22), 157-172.
[123]. Moharami Gargari, F., Gorbani, M., & Pourmoafee, M. (2015). Geochemistry and petrogenesis of Adakitic rocks from the Kiyamaki magmatic dome, southeast Jolfa (NW Iran). Iranian Society of crytallography and mineralogy, 32, 2.
[124]. Delavari, M., Amini, S., Schmitt, A. K., McKeegan, K. D., & Harrison, T. M. (2014). U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 200, 197-211.
[125]. Topuz, G., Altherr, R., Schwarz, W. H., Siebel, W., Satır, M., & Dokuz, A. (2005). Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). Contributions to mineralogy and petrology, 150(4), 441-455.
[126]. Qian, Q., & Hermann, J. (2013). Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation: Contributions to Mineralogy and Petrology,165(6), 1195–1224.
[127]. Zor, E. (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175(3), 1273-1282.
[128].Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3), 1068-1080.
[129]. Taghizadeh, F., Sodoudi, F., Afsari, N.,  & Ghassemi, M. R. (2010). Lithospheric structure of NW Iran from P and S receiver functions. Journal of seismology, 14(4), 823-836.
[130]. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences, 94(3), 401-419.
[131]. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725.
[132]. Madanipour, S., Ehlers, T. A., Yassaghi, A.,  Enkelmann, E. (2017). Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: Evidence for the Arabia‐Eurasia collision in the NW Iranian Plateau. Tectonics, 36(8), 1538-1561.
[133]. Lechmann, A., Burg, J.P., Ulmer, P., Guillong, M.,  & Faridi, M. (2018). Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos, 304, 311-328.
[134]. Pearce, J. A., Bender, J., De Long, S., Kidd, W., Low, P., Güner, Y., & Mitchell, J. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2), 189-229.
[135]. Moghadam, H.S., Corfu, F., Chiaradia, M., Stern, R .J., & Ghorbani, G. (2014). Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos, 210, 224-241.
[136]. Aftabi, A.,  & Atapour, H. (2000). Regional aspects of shoshonitic volcanism in Iran. Episodes, 23(2), 119-125.
[137]. Fazlnia, A. (2019). Origin and magmatic evolution of the Quaternary syn-collision alkali basalts and related rocks from Salmas, northwestern Iran. Lithos, 344, 297-310.
[138]. Yener Eyuboglu, A.M., Santosh, B.C., Keewook, Yi, D., Osman Bektaş, A., & Sanghoon, K. (2012) Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region. Lithos, 146–147: 218-232.
[139]. Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6): 687-705.
[140]. Karim, K. H., Koyi, H., Baziany, M. M., & Hessami, K. (2011). Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold–thrust belt, Kurdistan Region, NE Iraq. Geological Magazine, 148(5-6), 925-939.
[141]. McQuarrie, N., Stock, J., Verdel, C., & Wernicke, B. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical research letters, 30(20).
[142]. Vincent, S. J., Allen, M. B., Ismailzadeh, A. D., Flecker, R, Foland, K. A., & Simmons, M. D. (2005). Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geological Society of America Bulletin, 117(11-12), 1513-1533.
[143]. Seyedrahimi‑Niaraq, M., Bina, S. M.,  Itoi, R. (2021). Numerical and thermodynamic modeling for estimating production capacity of NW Sabalan geothermal field, Iran. Geothermics, 90.
[144]. Seyedrahimi‑Niaraq, M., Doulati Ardejani, F., Noorollah, Y., & Porkhial, S. (2017). Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal feld, Iran. Geotherm Energy, 5, 14.
[145] Seyedrahimi‑Niaraq, M., Doulati Ardejani, F., Noorollah, Y., Nasrabadi, S. J., & Hekmatnejad, A. (2021). An unsaturated three-dimensional model of fluid flow and heat transfer in NW Sabalan geothermal reservoir. Geothermics, 89.
[146]. Berberian, F., & Berberian, M. (1981). Tectono‐plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution, 3, 5-32.
[147]. Keskin, M., Pearce, J. A., Kempton, P. D., & Greenwood, P. (2006). Magma-crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. Special papers-geological society of america, 409, 475. 
[148]. Djamour, M. Y., Vernant, P., Nankali, H. R.,  Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1-2), 27-34.
[149]. Fedele, Z., Mehdipour Ghazi, J., Agostini, S., Ronca, S., Innocenzi, F., & Lustrino, M. (2023). Concurrent adakitic and non-adakitic Late Miocene-Quaternary magmatism at the Sahand volcano, Urumieh-Dokhtar Magmatic Arc (NW Iran). Lithos, 458–459, 107344.
[150]. Nazari, M., Arian, M. A., Solgi, A., Zareisahamieh, R., & Yazdi, A. (2023). Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran, Iranian Journal of Earth Sciences, 15(4), 228-247. https://doi.org/10.30495/ijes.2023.1956689.1746
[151]. Moghimi, H., Rezaeian, M., & Sobouti, F. (2016). Analysis of Structural Fractures in Sabalan Volcano. Master'Structural s Thesis, 156.