[1]. Martin, H., Smithies, R., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), 1-24.
[2]. Zhang, P. Z., Wen, X. Z., Shen, Z. K., & Chen, J. h. (2010). Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual review of earth and planetary sciences, 38, 353-382.
[3]. Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3-4), 433-447.
[4]. Ghorbani, M. R., & Bezenjani, R. N. (2011). Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc, 20, 188-202
[5]. Azizi, H., Asahara, Y., Tsuboi, M., Takemura, K., & Razyani, S. (2014). The role of heterogenetic
mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran. Chemie der Erde-Geochemistry, 74, 87-97.
[6]. Delavari, M., Amini, S., Schmitt, A. K., McKeegan, K. D., & Harrison T. M. (2014). U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 200, 197-211.
[7]. Rossetti, F., Nasrabady, M., Theye, T., Gerdes, A., Monié, P., Lucci, F., & Vignaroli, G. (2014). Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran). GSA Bulletin, 126, 317-343.
[8]. Omrani, H. (2018). Island-arc and active continental margin adakites from the Sabzevar zone, Iran. Petrology, 26, 96-113.
[9]. Castillo, P. R. (2006). An overview of adakite petrogenesis. Chinese Science Bulletin, 51, 257-268.
[10]. Şengör, A. M. C., & Kidd, W. S. F. (1979). Post-collision tectonics of the Turkish and Iranian plateau and companions with Tibet. Tectonophysics, 55, 361-376.
[11]. Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Şaroğlu, F., & Şengör, A. M. C. (1986). Shortening of continental lithosphere: The neotectonics of Eastern Anatolia a young collision zone. Coward, M., Ries, A.(Ed.). Collision Tectonics. Special Publication of the Geological Society. London, 19, 3-36.
[12]. Dilek, Y., & Altunkaynak, Ş. (2009). Geochemical and temporal evolution of Cenozoic magmatism in Western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society of London Special Publication, 311, 213–233.
[13]. Kheirkhah, M., Allen, M. B. & Emami. M. (2009). Quaternary syn-collision magmatism from the Iran/Turkey borderlands, Journal of Volcanology and Geothermal Research, 182(1-2), 1–12.
[14]. Azizi, H., & Tsubo, M. (2021). The Van Microplate: A New Microcontinent at the Junction of Iran, Turkey, and Armenia. Frontiers in Earth Science, 8.
[15]. Allen, M. B., Kheirkhah, M., Neill, I., Emami, M. H., & McLeod, C. L. (2013). Generation of arc andwithin-plate chemical signatures in collision zone magmatism: quaternary lavas from kurdistan province, Iran. Journal of Petrology, 54(5), 887-911.
[16]. Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S, Khatib, M.M., & Iizuka, Y. (2013). Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162(24), 70-87.
[17]. Ghalamghash, J., Schmitt, A.K., & Chaharlang, R. (2019). Age and compositional evolution of Sahand volcano in the context of postcollisional magmatism in northwestern Iran: evidence for time transgressive
magmatism away from the collisional suture. Lithos, 344–345, 265–279.
[18]. Lustrino, M., Salari, G., Rahimzadeh, B., Fedele, L., Masoudi, F., & Agostini, S. (2021). Quaternary
melanephelinites and melilitites from Nowbaran (NW Urumieh-Dokhtar Magmatic Arc, Iran): origin of ultrabasic-ultracalcic melts in a post-collisional setting. Journal of Petrology, 62, 1-31.
[19]. Fedele, L., Mehdipour Ghazi., J., Agostini, S., Ronca, S., Innocenzi, F., & Lustrino, M. (2023). Concurrent adakitic and non-adakitic Late Miocene-Quaternary magmatism at the Sahand volcano, Urumieh-Dokhtar Magmatic Arc (NW Iran). Lithos, 458–459, 107344.
[20]. Omrani, H., Michaeli, R. & Moazzen, M. (2013). Geochemistry and petrogenesis of the Gasht peraluminous granite, western Alborz Mountains, Iran. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 268/2, 175–189.
[21]. Omrani, H., Moazzen, M., Oberhänsli, R., Tsujimori, T., Bousquet, R. & Moayyed, M. (2013). Metamorphic history of glaucophane- paragonite-zoisite eclogites from the Shanderman area, northern Iran. Journal of Metamorphic Geology, 31, 791-812.
[22]. Omrani, H., Moazzen, M., Oberhänsli, R., & Moslempour, M. E. (2017). Iranshahr blueschist: subduction of the inner Makran oceanic crust. Journal of Metamorphic Geology, 35(4).
[23]. Bavali, K., Motaghi, K., Sobouti, F., Ghods, A., Abbasi, M., Priestley, K., & Rezaeian, M. (2016). Lithospheric structure beneath NW Iran using regional and teleseismic travel-time tomography. Physics of the Earth and Planetary Interiors, 253, 97-107.
[24]. Faridi, M., Nazari, H., Burg, J. P., Haghipour, N., Talebian, M., Ghorashi, M., & Sahebari, S S. (2019). Structural Characteristics, Paleoseismology and Slip Rate of the Qoshadagh Fault, Northwest of Iran. Geotectonics,53(2), 280-297.
[25]. Moradi, A. S., Hatzfeld, D., & Tatar, M. (2011). Microseismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics, 506(1-4), 22-30.
[26]. Azad, S. S., Philip, H., Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., & Lamothe, M. (2015). Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640, 20-38.
[27]. Dilek, Y., Imamverdiyev, N., & Altunkaynak, Ş. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4-6), 536-578.
[28]. Ghalamghash, J., Mousavi, Z., Hassanzadeh, J., & Schmitt, A. K. (2016). Geology, Zircon geochronology and petrogenesis of Sabalan Volcano: northwest Iran. Journal of Volcanology and Geothermal Research, 327, 192–207.
[29]. Ghalamghash, J., Mousavi, S.Z., & Khalatbari Jafari, M. (2022). Thermobarometry and petrogenesis of Sabalan volcanic rocks: based on mineral chemistry. In Persian. Researches in Earth Sciences, 13, 26–43.
[30]. Verdel. C., Wernicke, B.P., Hassanzadeh, J., & Guest, B. (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3).
[31]. Mason, J. A., Jacobs, P. M., Hanson, P. R., Miao, X., & Goble, R. J. (2003). Sources and paleoclimatic significance of Holocene Bignell loess, central Great Plains, USA. Quaternary Research, 60(3), 330-339.
[32]. Didon, J., & Gemain, Y. M. (1976). Le Sabalan, volcan plio-quaternaire de l'Azerbaidjan oriental (Iran): étude géologique et pétrographique de l'édifice et de son environnement régional. Universite Scientifique et Médicale de Grenobl.
[33]. Shahbazi Shiran, H. (2013). Petrogenesis of Quaternary Shoshonitic Volcanism in NE Iran (Ardabil): Implication for Postcollisional Magmatism. Journal of Geological Research, 1-12.
[34]. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of
volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27(3), 745-750.
[35]. Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of petrology, 48(12), 2341-2357.
[36]. Irvine, T. N., & Baragar, W. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5): 523-548.
[37]. Peccerillo. A., & Taylor, S. R. (1976). Geochemistry of Eocene Calc–alkaline volcanic rocks from the Kastamonu area. Northern Turkey Contrib, Mineral Petrology, 58(1), 63–8.
[38]. Sun, S. S. & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, 42(1), 313-345.
[39]. Drake, M. J., & Weill, D. F. (1975). Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochimica et Cosmochimica Acta, 39(5), 689-712.
[40]. Weill, D. F., & Drake, M. J. (1973). Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science, 180(4090), 1059-1060.
[41]. Lai, S., Qin, J., Li, Y., Li, S., & Santosh, M. (2012). Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 47, 216-230.
[42]. Irving, A. J., & Frey, F. A. (1978). Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42(6), 771-787.
[43]. Liu, S., Hu, R. Z., Gao, S., Feng, C. X., Yu, B. B., Qi, Q., Wang, T., Feng, G. Y., & Coulson, I. M. (2009). Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong province, eastern China: constraints on petrogenesis and implications. Journal of Asian Earth Sciences, 35(5), 445-458.
[44]. Kepezhinskas, P. K., Defant, M. J., & Drummond, M. (1995). Na metasomatism in the island-arc mantle by slab melt–peridotite interaction: evidence from mantle interaction-evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology, 36, 1505–1527.
[45]. Defant, M.J., Drummond, M.S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. nature, 347(6294), 662-665.
[46]. Fraser, G., Ellis, D., & Eggins, S. (1997). Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25, 607-610.
[47]. Davidson, J., Turner, S., Handley, H., Macpherson, C., & Dosseto, A. (2007). Amphibole spong in arc crust?. Geology, 35, 787-790.
[48]. Castillo, P.R. (2012). Adakite petrogenesis. Lithos ,134–135, 304–316.
[49]. Castillo, P. R., Janney, P. E., & Solidum, R. U. (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134, 33-51.
[50]. Defant, M. J., & Kepezhinskas, P. (2001). Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6), 65-69.
[51]. Drummond, M. S., Defant, M. J. & Kepezhinkas, P. K. (1996). Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2), 205-215.
[52]. Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429.
[53]. Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24.
[54]. Richards, J. P., & Kerrich, R. (2007). Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic geology, 102(4), 537-576.
[55]. Beate, B., Monzier, M., Spikings, R., Cotton, J., Silva, J., Bourdon, E., & Eissen, J. P. (2001). Mio–Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth and Planetary Science Letters, 192(4), 561-570.
[56]. Smith, D. R., & Leeman, W. P. (1987). Petrogenesis of Mount St. Helens dacitic magmas. Journal of Geophysical Research: Solid Earth, 92(B10), 10313-10334.
[57]. Azizi, H., & Moinevaziri, H. (2009). Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47(4), 167-179.
[58]. Rapp, R.P., Watson, E.B., Miller, C.F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4), 1-25.
[59]. Wang, X. L., Shu, X. J., Xu, X., Tang, M., & Gaschnig, R. (2012). Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the eastern Jiangnan orogen, southern China. Journal of Asian Earth Sciences, 61, 243-256.
[60]. Breeding, C. M., Ague, J. J., & Bröcker, M. (2004). Fluid-metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas. Geology, 32(12), 1041–1044.
[61]. Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L., & Zhang, R. S. (2015). Are continental “adakites” derived from thickened or foundered lower crust?, Earth and Planetary Science Letters, 419, 125-133.
[62]. Dai, H.-K., Zheng, J., Zhou, X., Griffin, W.L. (2017). Generation of continental adakitic rocks: Crystallization modeling with variable bulk partition coefficients. Lithos, 272–273, 222– 231.
[63]. Deng, J., Yang, X., Qi, H., Zhang, Z. F., Mastoi, A. S. & Sun, W. (2017). Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines: Implication for partial melting of the paleo-Pacific Plate. Ore Geology Reviews, 88, 251-269.
[64]. Karsli, O., Dokuz, A., Uysal, İ., Aydin, F., Kandemir, R., & Wijbrans, J. (2010). Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114, 109-120.
[65]. Kolb, J., Dziggel, A., & Schlatter, D. M. (2013). Gold occurrences of the Archean North Atlantic craton, southwestern Greenland: a comprehensive genetic model. Ore Geology Reviews,. 54, 29–58.
[66]. Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., & Bai, Z. H. (2006). Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos, 89(3-4), 424-446.
[67]. Zhou, R. J., Chen, G. X., Li, Y., Zhou, C. H., Gong, Y., He, Y. L.,. & Li, X. G. (2005). Research on active faults in Litang-Batang region, Western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm. Seismol. Geol. 1 (01), 31–43.
[68]. Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong X. L., & Ma, J. L. (2006). Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1), 119–144.
[69]. Arculus, R. J. (2003). Use and abuse of the terms calcalkaline and calcalkalic. Journal of petrology, 44(5), 929-935.
[70]. Münker, C., Wörner, G., Yogodzinski, G., & Churikova, T. (2004). Behaviour of high field strength elements in subduction zones: Constraints from Ka-mchatka–Aleutian arc lavas. Earth and Planetary Science Letters, 224, 275–293.
[71]. Ding, X., Lundstrom, C., Huang, F., Li, J., Zhang, Z. M., Sun, X. M., Liang, J. L., & Sun, W. D. (2009). Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6). 473-501.
[72]. Foley, S., Tiepolo, M., & Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature, 417, 837–840.
[73]. Moyen, J. F. (2009). High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos,
112, 556-574.
[74]. Nagel, T. J., Hoffmann, J. E., & Münker, C. (2012). Generation of Eoarchean tonalitic-trondhjemitic-granodioritics from thickened mafi c arc crust: Geology, 40, 375–378.
[75]. Hoffmann, J. E., Munker, C., Polat, A., Rosing, M. T., & Schulz, T. (2011). The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Acta, 75, 6610-6628
[76]. Kay, S. M., & Mpodozis, C. (2001). Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11(3).
[77]. Gao, Y., Yang, Z., Santosh, M., Hou, Z., Wei, R., & Tian, S. (2010). Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4), 651-663.
[78]. Wang, Q., Wyman, D. A., Zhao, Z. H., Xu, J. F., Bai, Z. H., Xiong, X. L., & Chu, Z. Y. (2007). Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2), 42-64.
[79]. Zhang, Y. X., Tang, X. C., Zhang, K. J., Zeng, L., & Gao, C. L. (2014). U–Pb and Lu–Hf isotope systematics of detrital zircons from the Songpan–Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth. International Geology Review, 56(1), 29-56.
[80]. Zhu, J. C., Wang, R. C., Zhang, P. H., Xie, C. F., Zhang, W. L., Zhao, K. D., Xie, L., Yang, C., Che, X. D., Yu, A., & Wang, L. B. (2009). Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Science in China Series D: Earth Sciences,52(9), 1279–1294.
[81]. Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y., Mo, X. X. (2004). Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155.
[82]. Zhao, X. B., Xue, C. J., Seltmann, R., Dolgopolova, A., Andersen, J. C. O., & Zhang, G. Z. (2020). Volcanic–plutonic connection and associated Au-Cu mineralization of the Tulasu ore district, Western Tianshan, NW China: Implications for mineralization potential in Palaeozoic arc terranes. Geological Journal, 55(3), 2318–2341.
[83]. O’Neill, H. S. C., & Palme, H., (1998). Composition of the silicate Earth: Implications for accretion and core formation. In: Jackson, I. (Ed.), The Earth’s Mantle: Structure, Composition, and Evolution—The Ringwood Volume. Cambridge University Press, Cambridge, 1, 3–126.
[84]. Yang, W. G., Zhong, Y., Zhu, L. D., Xie, L., Mai, Y. M., Li, N., Zhou, Y., Zhang, H. L., Xia, Tong, X., & Feng, W. N. (2022). The Early Cretaceous tectonic evolution of the Neo-Tethys: constraints from zircon U–Pb geochronology and geochemistry of the Liuqiong adakite, Gongga, Tibet. Geological Magazine, 159(10), 1-16.
[85]. Ousta, S. h., Ashja-Ardalan, A., Yazdi, A., Dabiri, R., & Arian, M. A. (2024). Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin, Geopersia, 14 (1), 89-111. https://doi.org/10.22059/geope.2023.364334.648729
[86]. Guan. Q., Zhu, D. C., Zhao, Z. D., Dong, G. C., Zhang, L. L., Li, X. W., Liu, M., Mo, X. X., Liu, Y. S., & Yuan, H. L. (2012). Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21, 88-99.
[87]. Liu, J. N., Feng, C. Y., Qi, F., Li, G. C., Ma, S. C., & Xiao, Y. (2012). SIMS zircon U–Pb dating and fluid inclusion studies of Xiadeboli Cu–Mo ore district in Dulan County, Qinghai Province, China Acta Petrology. Sin 28 (2), 679-690.
[88]. Wang Q, McDermott F, Xu J. f., Bellon, H., Zhu, Y.T. (2005). Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6), 465-468.
[89]. Hao, L. L., Wang, Q., Wyman, D. A., Ou, Q., Dan, W., Jiang, Z. Q., Wu, F. Y., Yang, J. H., Long, X. P., & Li, J. (2016). Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245, 223-242.
[90]. Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q., Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N., & Guo, H. F. (2014). Petrogenesis of the Early Eocene adakitic rocks in the Nagpuri area, southern Lhasa: partial melting of thickened lower crust during slab break-of and implications for crustal thickening in southern Tibet. Lithos, 196–197, 321–338.
[91]. Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Li, X. H., Lee, H. Y., Lin, T. H., & Chiu, H. Y. (2016). New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos, 264, 348–359.
[92]. Baumann, A., Spie,s O., & Lensch, G. (1983). Strontium isotopic composition of post ophiolitic Tertiary volcanics between kashmar, Sabzevar and Quchan/ NE Iran. Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran. Report N 51.
[93]. Spies, O., Lensch, G., & Mihm, A. (1983). Geochemistry of the post-ophiolitic Tertiary volcanic between Sabzevar and Quchan/NE-Iran. Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran. Report N 51.
[94]. Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacifc ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132.
[95]. Rapp, R. P., Watson, E. B., & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research, 51, 1-25.
[96]. Zindler, A. & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571.
[97]. Defant, M. J., Jackson, T. E., Drummond, M. S., DeBoer, J. Z., Bellon, H., Feigenson, M. D., Maury, R. C., & Stewart, R. H. (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149(4), 569-579.
[98]. Asadi. S., Moore. F., & Zarasvandi, A. (2014). Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138, 25-46.
[99]. Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., & Murata, M. (2016). Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geology, 72, 323-342.
[100]. Atherton, M. P., & Petford, N. (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, 144-146.
[101]. Wang, H., Fu, B., Xu, Z., Lu, X., Lu, J., Li, H., Qu, W., Yang, X., Chen, W., & Zhang, J. (2015). Geology, geochemistry, and geochronology of the Wangjiazhuang porphyry–breccia Cu (–Mo) deposit in the Zouping volcanic basin, eastern North China Block. Ore Geology Reviews, 67, 336-353.
[102]. Mousavi, S. Z., Darvishzadeh, A., Ghalamghash, J., Abedini, M. V. (2014). Volcanology and geochronology of Sabalan volcano, the highest stratovolcano in Azerbaijan region, NWIran. Nautilus, 128, 85-98.
[103]. Maury, R. C., Sajona, F. G., Pubellier, M., Bellon, H., & Defant, M. J. (1996). Fusion de la croute oceanique dans les zones de subduction/collision recentes; l'exemple de Mindanao (Philippines). Bulletin de la Société géologique de France, 167(5), 579-595.
[104]. Morris, P.A. (1995). Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5), 395-398.
[105]. Brophy, J. G., & Marsh, B. D. (1986). On the origin of high-alumina arc basalt and the mechanics of melt extraction: Journal of Petrology, 27(4), 763-789.
[106]. Johnston, A. D. (1986). Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands: implications for the origin of island arcs and tonalite-trondhjemite. Contrib Mineral Petrology, 92, 368-382.
[107]. Chung, S. L., Liu, D., Ji, J., Chu, M. F., Lee, H. Y., Wen, D. J., & Zhang, Q. (2003). Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021-1024.
[108]. Kay, R. W., & Kay, S. M. (1993). Delamination and delamination magmatism. Tectonophysics, 219, 177-189.
[109]. Kay, R. W., & Kay, S. M. (2002). Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3), 303-311.
[110]. Kay, S. M., Godoy, E., & Kurtz, A. (2005). Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin, 117(1-2), 67-88.
[111]. Kay, S. M., Mpodozis, C., Ramos, V. A., Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33 S). Geological Society of America Special Paper, 265, 113-137.
[112]. Yumul, G. P., Dimalanta, C., Bellon, H., Faustino, D. V., De Jesus. J. V., Tamayo, R. A., & Jumawan, F. T. (2000). Adakitic lavas in the Central Luzon back‐arc region, Philippines: Lower crust partial melting products? Island Arc, 9(4), 499-512.
[113]. Macpherson, C. G., Dreher, S. T., & Thirlwall, M. F. (2006). Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4), 581-593.
[114]. Richards, J. R., & Kerrich, R. (2007). Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102, 537-576.
[115]. Rooney, T. O., Franceschi, P., & Hall, C. M. (2011). Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contributions to mineralogy and petrology, 161(3), 373-388.
[116]. SellÃ, D., Dungan, M., Langmuir, C., & Leeman, W. (2007). Adakitic Dacites Formed by Intracrustal Crystal Fractionation of Water-rich Parent Magmas at Nevado de Longavi Volcano (36 {middle dot} 2 {degrees} S; Andean Southern Volcanic Zone, Central Chile). Journal of petrology, 48(11).
[117]. Hidalgo, P. J., & Rooney, T. O. (2010). Crystal fractionation processes at Baru volcano from the deep to shallowcrust.Geochemistry,Geophysics,Geosystems,11(12).
[118]. Hidalgo, P,J., & Rooney, T.O. (2014). Petrogenesis of a voluminous Quaternary adakitic volcano: the case of Baru volcano. Contributions to mineralogy and petrology, 168(3), 1-19.
[119]. Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., (2006). Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letter 243, 581-593.
[120]. Nakamura, H., & Iwamori, H. (2013). Generation of adakites in a cold subduction zone due to double subducting plates. Contributions to mineralogy and petrology, 165(6), 1107-1134.
[121]. Jahangiri, A. (2007). Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433-447.
[122]. Amel ,N., Jalili Ghareh Ghaye, V., Hajialioghli, R., & Moayyed, M. (2015). Petrogenesis of adakitic Plio-Quaternary post collision rocks, north of Sahand volcano (NW of Iran). Iranian Journal of Petrology, 6(22), 157-172.
[123]. Moharami Gargari, F., Gorbani, M., & Pourmoafee, M. (2015). Geochemistry and petrogenesis of Adakitic rocks from the Kiyamaki magmatic dome, southeast Jolfa (NW Iran). Iranian Society of crytallography and mineralogy, 32, 2.
[124]. Delavari, M., Amini, S., Schmitt, A. K., McKeegan, K. D., & Harrison, T. M. (2014). U–Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: implication for the late stage of the tectonic evolution of the Sistan Ocean. Lithos, 200, 197-211.
[125]. Topuz, G., Altherr, R., Schwarz, W. H., Siebel, W., Satır, M., & Dokuz, A. (2005). Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey). Contributions to mineralogy and petrology, 150(4), 441-455.
[126]. Qian, Q., & Hermann, J. (2013). Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation: Contributions to Mineralogy and Petrology,165(6), 1195–1224.
[127]. Zor, E. (2008). Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus. Geophysical Journal International, 175(3), 1273-1282.
[128].Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3), 1068-1080.
[129]. Taghizadeh, F., Sodoudi, F., Afsari, N., & Ghassemi, M. R. (2010). Lithospheric structure of NW Iran from P and S receiver functions. Journal of seismology, 14(4), 823-836.
[130]. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences, 94(3), 401-419.
[131]. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725.
[132]. Madanipour, S., Ehlers, T. A., Yassaghi, A., Enkelmann, E. (2017). Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: Evidence for the Arabia‐Eurasia collision in the NW Iranian Plateau. Tectonics, 36(8), 1538-1561.
[133]. Lechmann, A., Burg, J.P., Ulmer, P., Guillong, M., & Faridi, M. (2018). Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos, 304, 311-328.
[134]. Pearce, J. A., Bender, J., De Long, S., Kidd, W., Low, P., Güner, Y., & Mitchell, J. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2), 189-229.
[135]. Moghadam, H.S., Corfu, F., Chiaradia, M., Stern, R .J., & Ghorbani, G. (2014). Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos, 210, 224-241.
[136]. Aftabi, A., & Atapour, H. (2000). Regional aspects of shoshonitic volcanism in Iran. Episodes, 23(2), 119-125.
[137]. Fazlnia, A. (2019). Origin and magmatic evolution of the Quaternary syn-collision alkali basalts and related rocks from Salmas, northwestern Iran. Lithos, 344, 297-310.
[138]. Yener Eyuboglu, A.M., Santosh, B.C., Keewook, Yi, D., Osman Bektaş, A., & Sanghoon, K. (2012) Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region. Lithos, 146–147: 218-232.
[139]. Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6): 687-705.
[140]. Karim, K. H., Koyi, H., Baziany, M. M., & Hessami, K. (2011). Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold–thrust belt, Kurdistan Region, NE Iraq. Geological Magazine, 148(5-6), 925-939.
[141]. McQuarrie, N., Stock, J., Verdel, C., & Wernicke, B. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical research letters, 30(20).
[142]. Vincent, S. J., Allen, M. B., Ismailzadeh, A. D., Flecker, R, Foland, K. A., & Simmons, M. D. (2005). Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geological Society of America Bulletin, 117(11-12), 1513-1533.
[143]. Seyedrahimi‑Niaraq, M., Bina, S. M., Itoi, R. (2021). Numerical and thermodynamic modeling for estimating production capacity of NW Sabalan geothermal field, Iran. Geothermics, 90.
[144]. Seyedrahimi‑Niaraq, M., Doulati Ardejani, F., Noorollah, Y., & Porkhial, S. (2017). Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal feld, Iran. Geotherm Energy, 5, 14.
[145] Seyedrahimi‑Niaraq, M., Doulati Ardejani, F., Noorollah, Y., Nasrabadi, S. J., & Hekmatnejad, A. (2021). An unsaturated three-dimensional model of fluid flow and heat transfer in NW Sabalan geothermal reservoir. Geothermics, 89.
[146]. Berberian, F., & Berberian, M. (1981). Tectono‐plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution, 3, 5-32.
[147]. Keskin, M., Pearce, J. A., Kempton, P. D., & Greenwood, P. (2006). Magma-crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. Special papers-geological society of america, 409, 475.
[148]. Djamour, M. Y., Vernant, P., Nankali, H. R., Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1-2), 27-34.
[149]. Fedele, Z., Mehdipour Ghazi, J., Agostini, S., Ronca, S., Innocenzi, F., & Lustrino, M. (2023). Concurrent adakitic and non-adakitic Late Miocene-Quaternary magmatism at the Sahand volcano, Urumieh-Dokhtar Magmatic Arc (NW Iran). Lithos, 458–459, 107344.
[150]. Nazari, M., Arian, M. A., Solgi, A., Zareisahamieh, R., & Yazdi, A. (2023). Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran, Iranian Journal of Earth Sciences, 15(4), 228-247. https://doi.org/10.30495/ijes.2023.1956689.1746
[151]. Moghimi, H., Rezaeian, M., & Sobouti, F. (2016). Analysis of Structural Fractures in Sabalan Volcano. Master'Structural s Thesis, 156.