[1]. Pandey, N., Tripathy, S. K., Patra, S. K., & Jha, G. (2023). Recent progress in hydrometallurgical processing of nickel lateritic ore. Transactions of the Indian Institute of Metals, 76(1), 11-30.
[2]. Abbasi Gharaei, A., Rezai, B., & Hamidian Shoormasti, H. (2019). X-Ray mapping and the mineralogy pattern of nickel laterite ore: Bavanat, Fars, Iran. Journal of Mining and Environment, 10(3), 811-820.
[3]. Zappala, L., McDonald, R., & Pownceby, M. I. (2023). Nickel laterite beneficiation and potential for upgrading using high temperature methods: A review. Mineral Processing and Extractive Metallurgy Review, 1-23.
[4]. Asadrokht, M., & Zakeri, A. (2022). Chemo-physical concentration of a Low-grade nickel laterite ore. Minerals Engineering, 178, 107398.
[5]. Gharaei, A. A., Rezai, B., Aziz, A., & Shabani, K. S. (2014). The role of pH and solid content of ball grinding environment on rougher flotation. Research Journal of Applied Sciences, Engineering and Technology, 8(2), 272-276.
[6]. Jang, H. C., & Valix, M. (2017). Overcoming the bacteriostatic effects of heavy metals on Acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy, 168, 21-25.
[7.] Agatzini-Leonardou, S., & Zafiratos, I. G. (2004). Beneficiation of a Greek serpentinic nickeliferous ore Part II. Sulphuric acid heap and agitation leaching. Hydrometallurgy, 74(3-4), 267-275.
[8]. Büyükakinci, E., & Topkaya, Y. A. (2009). Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy, 97(1-2), 33-38.
[9]. Canterford, J.H., (1978a). Leaching of some Australian nickeliferous laterites with sulphuric acid at atmospheric pressure, Proceedings of the Australasia Institute of Mining and Metallurgy, pp. 19-26.
[10]. Canterford, J.H., (1978b). Mineralogical aspects of the extractive metallurgy of nickeliferous laterites. Australasia Institute of Mining and Metallurgy Conference, Melbourne, Australia, pp. 361-370.
[11]. Canterford, J. H. (1979). The sulphation of oxidized nickel ores. In International Laterite Symposium, Society of Mining Engineers. American Institute of Mining, Metallurgical, and Petroleum Engineers Incorporated (pp. 636-677).
[12]. Crundwell, F., Moats, M., & Ramachandran, V. (2011). Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier.
[13]. Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004, March). The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors Exchange (pp. 1-27). The prospectors and Developers Association of Canada Toronto.
[14]. Das, G. K., Muir, D. M., Senanayake, G., Singh, P., & Hefter, G. (1997). Acid leaching of nickel laterites in the presence of sulphur dioxide at atmospheric pressure. In Hydrometallurgy and refining of nickel and cobalt. Elsevier.
[15]. Das, G. K., & De Lange, J. A. B. (2011). Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper (II). Hydrometallurgy, 105(3-4), 264-269.
[16]. Göveli, A. (2006). Nickel extraction from gördes laterites by hydrochloric acid leaching (Master's thesis, Middle East Technical University).
[17]. Griffin, A., Nofal, P., Johnson, G., & Evans, H. (2002). Laterites-squeeze or ease. In Pressure Leaching and Hydrometallurgy Forum, ALTA (pp. 2-16).
[18]. Harris, B., & Magee, J. (2003). Atmospheric chloride leaching: the way forward for nickel laterites. Hydrometallurgy, 2003, 5th.
[19]. Harris, B., White, C., Jansen, M., & Pursell, D. (2006). A new approach to the high concentration chloride leaching of nickel laterites. ALTA Ni/Co, 11, 15-17.
[20]. Janwong, A. (2012). The agglomeration of nickel laterite ore. The University of Utah, USA.
[21]. Kyle, J. (2010). Nickel laterite processing technologies–where to next? In ALTA 2010 Nickel/Cobalt/Copper Conference. ALTA Metallurgical Services.
[22]. Luo, W., Feng, Q., Ou, L., Zhang, G., & Lu, Y. (2009). Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy, 96(1-2), 171-175.
[23]. Luo, W., Feng, Q. M., Ou, L. M., Lu, Y. P., & Zhang, G. F. (2009). A comprehensive study of atmospheric pressure leaching of saprolitic laterites in acidic media. Mineral Processing and Extractive Metallurgy, 118(2), 109-113.
[24]. McDonald, R. G., & Whittington, B. I. (2008). Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy, 91(1-4), 35-55.
[25]. McDonald, R. G., & Whittington, B. I. (2008). Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy, 91(1-4), 56-69.
[26]. Moskalyk, R. R., & Alfantazi, A. M. (2002). Nickel laterite processing and electrowinning practice. Minerals Engineering, 15(8), 593-605.
[27]. Mudd, G. M. (2010). Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews, 38(1-2), 9-26.
[28]. Norgate, T., & Jahanshahi, S. (2010). Low grade ores–smelt, leach or concentrate?, Minerals Engineering, 23(2), 65-73.
[29]. Quast, K., Xu, D., Skinner, W., Nosrati, A., Hilder, T., Robinson, D. J., & Addai-Mensah, J. (2013). Column leaching of nickel laterite agglomerates: effect of feed size. Hydrometallurgy, 134, 144-149.
[30]. Mbedzi, N. (2020). Impurity control by precipitation in synthetic atmospheric nickel laterite sulfate leach solutions (Doctoral dissertation, Curtin University).
[31]. Senanayake, G., Childs, J., Akerstrom, B. D., & Pugaev, D. (2011). Reductive acid leaching of laterite and metal oxides—A review with new data for Fe (Ni, Co) OOH and a limonitic ore. Hydrometallurgy, 110(1-4), 13-32.
[32]. Senanayake, G., & Das, G. K. (2004). A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy, 72(1-2), 59-72.
[33]. Steyl, J. D. T., Pelser, M., & Smit, J. T. (2008). Atmospheric leach process for nickel laterite ores. In Young CA, Corby PRT, Anderson G, Choi Y (eds) Hydrometallurgy 2008, proceedings of the sixth international symposium, SME, Phoenix, Arizona, August (pp. 17-21).
[34]. Weston, D. (1974a). U.S. Patent No. 3,793,432. Washington, DC: U.S. Patent and Trademark Office.
[35]. Weston, D. (1974b). U.S. Patent No. 3,793,430. Washington, DC: U.S. Patent and Trademark Office.
[36]. Whittington, B. I., & Muir*, D. (2000). Pressure acid leaching of nickel laterites: a review. Mineral Processing and Extractive Metullargy Review, 21(6), 527-599.
[37]. Xu, D., Liu, L. X., Quast, K., Addai-Mensah, J., & Robinson, D. J. (2013). Effect of nickel laterite agglomerate properties on their leaching performance. Advanced Powder Technology, 24(4), 750-756.
[38]. Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., ... & Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical reviews in environmental science and technology, 49(3), 212-275.
[39]. Kamrani, M. S., Seifpanahi-Shabani, K., Seyed-Hakimi, A., Ali, G. A. M., Agarwa, S., & Gupta, V. K. (2019). Degradation of cyanide from gold processing effluent by H2O2, NaClO and Ca (ClO) 2 combined with sequential catalytic process. Bulg. Chem. Commun, 51(3), 384-393.
[40]. Seifpanahi-Shabani, K., Eyvazkhani, A., & Heidari, P. (2019). Bioremediation of textile dyes wastewater: potential of bacterial isolates from a mining soils and wetlands. Progress in Color, Colorants and Coatings, 12(3), 155-161.
[41]. Yousefi Limaee, N., Ghahari, M., Seifpanahi-Shabani, K., Naeimi, A. (2023). Evaluation of adsorptive efficiency of calcium oxide nanoparticles for the elimination of cationic dyes: combustion synthesis, adsorption study and numerical modeling. Progress in Color, Colorants and Coatings, 16(1), 1-20.
[42]. Reddy, I. N., Reddy, C. V., Shim, J., Akkinepally, B., Cho, M., Yoo, K., & Kim, D. (2020). Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catalysis Today, 340, 277-285.
[43]. Meshram, T. (2020). Mineralogical variation in platinum group element within altered chromitite of the Kondapalli layered igneous complex (Southern India): Implication on magmatic evolution and its petrogenetic significance. Ore Geology Reviews, 120, 103398.
[44]. Chauhan, G., Kaur, P. J., Pant, K. K., & Nigam, K. D. P. (2020). Sustainable metal extraction from waste streams. John Wiley & Sons.