Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Science and Research Branch of Islamic Azad University, Tehran, Iran

2 Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

3 Department of Mining Engineering, Qaem Shahr Branch Islamic Azad University, Qaem Shahr, Iran

Abstract

This paper examines the performance of Atmospheric Leaching (AL) and High-Pressure Acid Leaching (HPAL) on nickel laterite, classified as limonite. The study, conducted on a laboratory scale, involved temperatures of 35-95°C for AL and 220-250°C for HPAL. Nickel and cobalt contents were found to be 0.7% and 0.04%, respectively. AL achieved an 89% yield of Al with a pH of 0.2 and a 14-hour leaching time, while nickel and iron recoveries reached 92% and 87% after 20 hours, with an acid consumption of 1.2 kg H2SO4 per 100 kg laterite (dry) at pH 0.2. Leaching experiments at 220-250°C for 2 hours showed similar nickel recovery rates, indicating no improvement beyond 240°C. Hematite, a stable compound associated with nickel, hindered its release during HPAL due to its resistance to leaching. Nickel yields remained around 90% in both AL and HPAL tests. Iron behavior differed significantly between the two methods, with HPAL dissolving iron initially but transforming it into hematite in situ, leading to lower net acid consumption compared to AL. The leaching mechanism for iron oxides followed empirical power law kinetics of order 1.5 with activation energies of 36.23 and 25.09 kJ/mol for Ni and Fe, respectively.

Keywords

Main Subjects

[1]. Pandey, N., Tripathy, S. K., Patra, S. K., & Jha, G. (2023). Recent progress in hydrometallurgical processing of nickel lateritic ore. Transactions of the Indian Institute of Metals76(1), 11-30.
[2]. Abbasi Gharaei, A., Rezai, B., & Hamidian Shoormasti, H. (2019). X-Ray mapping and the mineralogy pattern of nickel laterite ore: Bavanat, Fars, Iran. Journal of Mining and Environment10(3), 811-820.
[3]. Zappala, L., McDonald, R., & Pownceby, M. I. (2023). Nickel laterite beneficiation and potential for upgrading using high temperature methods: A review. Mineral Processing and Extractive Metallurgy Review, 1-23.
[4]. Asadrokht, M., & Zakeri, A. (2022). Chemo-physical concentration of a Low-grade nickel laterite ore. Minerals Engineering178, 107398.
[5]. Gharaei, A. A., Rezai, B., Aziz, A., & Shabani, K. S. (2014). The role of pH and solid content of ball grinding environment on rougher flotation. Research Journal of Applied Sciences, Engineering and Technology8(2), 272-276.
[6]. Jang, H. C., & Valix, M. (2017). Overcoming the bacteriostatic effects of heavy metals on Acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy168, 21-25.
[7.] Agatzini-Leonardou, S., & Zafiratos, I. G. (2004). Beneficiation of a Greek serpentinic nickeliferous ore Part II. Sulphuric acid heap and agitation leaching. Hydrometallurgy74(3-4), 267-275.
[8]. Büyükakinci, E., & Topkaya, Y. A. (2009). Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy97(1-2), 33-38.
[9]. Canterford, J.H., (1978a). Leaching of some Australian nickeliferous laterites with sulphuric acid at atmospheric pressure, Proceedings of the Australasia Institute of Mining and Metallurgy, pp. 19-26.
[10]. Canterford, J.H., (1978b). Mineralogical aspects of the extractive metallurgy of nickeliferous laterites. Australasia Institute of Mining and Metallurgy Conference, Melbourne, Australia, pp. 361-370.
 [11]. Canterford, J. H. (1979). The sulphation of oxidized nickel ores. In International Laterite Symposium, Society of Mining Engineers. American Institute of Mining, Metallurgical, and Petroleum Engineers Incorporated (pp. 636-677).
[12]. Crundwell, F., Moats, M., & Ramachandran, V. (2011). Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier.
[13]. Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004, March). The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors Exchange (pp. 1-27). The prospectors and Developers Association of Canada Toronto.
[14]. Das, G. K., Muir, D. M., Senanayake, G., Singh, P., & Hefter, G. (1997). Acid leaching of nickel laterites in the presence of sulphur dioxide at atmospheric pressure. In Hydrometallurgy and refining of nickel and cobalt. Elsevier.
[15]. Das, G. K., & De Lange, J. A. B. (2011). Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper (II). Hydrometallurgy105(3-4), 264-269.
[16]. Göveli, A. (2006). Nickel extraction from gördes laterites by hydrochloric acid leaching (Master's thesis, Middle East Technical University).
[17]. Griffin, A., Nofal, P., Johnson, G., & Evans, H. (2002). Laterites-squeeze or ease. In Pressure Leaching and Hydrometallurgy Forum, ALTA (pp. 2-16).
[18]. Harris, B., & Magee, J. (2003). Atmospheric chloride leaching: the way forward for nickel laterites. Hydrometallurgy2003, 5th.
[19]. Harris, B., White, C., Jansen, M., & Pursell, D. (2006). A new approach to the high concentration chloride leaching of nickel laterites. ALTA Ni/Co11, 15-17.
[20]. Janwong, A. (2012). The agglomeration of nickel laterite ore. The University of Utah, USA.
[21]. Kyle, J. (2010). Nickel laterite processing technologies–where to next? In ALTA 2010 Nickel/Cobalt/Copper Conference. ALTA Metallurgical Services.
[22]. Luo, W., Feng, Q., Ou, L., Zhang, G., & Lu, Y. (2009). Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy96(1-2), 171-175.
[23]. Luo, W., Feng, Q. M., Ou, L. M., Lu, Y. P., & Zhang, G. F. (2009). A comprehensive study of atmospheric pressure leaching of saprolitic laterites in acidic media. Mineral Processing and Extractive Metallurgy118(2), 109-113.
[24]. McDonald, R. G., & Whittington, B. I. (2008). Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy91(1-4), 35-55.
[25]. McDonald, R. G., & Whittington, B. I. (2008). Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy91(1-4), 56-69.
[26]. Moskalyk, R. R., & Alfantazi, A. M. (2002). Nickel laterite processing and electrowinning practice. Minerals Engineering15(8), 593-605.
[27]. Mudd, G. M. (2010). Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geology Reviews38(1-2), 9-26.
[28]. Norgate, T., & Jahanshahi, S. (2010). Low grade ores–smelt, leach or concentrate?, Minerals Engineering23(2), 65-73.
[29]. Quast, K., Xu, D., Skinner, W., Nosrati, A., Hilder, T., Robinson, D. J., & Addai-Mensah, J. (2013). Column leaching of nickel laterite agglomerates: effect of feed size. Hydrometallurgy134, 144-149.
[30]. Mbedzi, N. (2020). Impurity control by precipitation in synthetic atmospheric nickel laterite sulfate leach solutions (Doctoral dissertation, Curtin University).
[31]. Senanayake, G., Childs, J., Akerstrom, B. D., & Pugaev, D. (2011). Reductive acid leaching of laterite and metal oxides—A review with new data for Fe (Ni, Co) OOH and a limonitic ore. Hydrometallurgy110(1-4), 13-32.
[32]. Senanayake, G., & Das, G. K. (2004). A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy72(1-2), 59-72.
[33]. Steyl, J. D. T., Pelser, M., & Smit, J. T. (2008). Atmospheric leach process for nickel laterite ores. In Young CA, Corby PRT, Anderson G, Choi Y (eds) Hydrometallurgy 2008, proceedings of the sixth international symposium, SME, Phoenix, Arizona, August (pp. 17-21).
[34]. Weston, D. (1974a). U.S. Patent No. 3,793,432. Washington, DC: U.S. Patent and Trademark Office.
[35]. Weston, D. (1974b). U.S. Patent No. 3,793,430. Washington, DC: U.S. Patent and Trademark Office.
[36]. Whittington, B. I., & Muir*, D. (2000). Pressure acid leaching of nickel laterites: a review. Mineral Processing and Extractive Metullargy Review21(6), 527-599.
[37]. Xu, D., Liu, L. X., Quast, K., Addai-Mensah, J., & Robinson, D. J. (2013). Effect of nickel laterite agglomerate properties on their leaching performance. Advanced Powder Technology24(4), 750-756.
[38]. Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., ... & Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical reviews in environmental science and technology49(3), 212-275.
[39]. Kamrani, M. S., Seifpanahi-Shabani, K., Seyed-Hakimi, A., Ali, G. A. M., Agarwa, S., & Gupta, V. K. (2019). Degradation of cyanide from gold processing effluent by H2O2, NaClO and Ca (ClO) 2 combined with sequential catalytic process. Bulg. Chem. Commun51(3), 384-393.
[40]. Seifpanahi-Shabani, K., Eyvazkhani, A., & Heidari, P. (2019). Bioremediation of textile dyes wastewater: potential of bacterial isolates from a mining soils and wetlands. Progress in Color, Colorants and Coatings12(3), 155-161.
[41]. Yousefi Limaee, N., Ghahari, M., Seifpanahi-Shabani, K., Naeimi, A. (2023). Evaluation of adsorptive efficiency of calcium oxide nanoparticles for the elimination of cationic dyes: combustion synthesis, adsorption study and numerical modeling. Progress in Color, Colorants and Coatings16(1), 1-20.
[42]. Reddy, I. N., Reddy, C. V., Shim, J., Akkinepally, B., Cho, M., Yoo, K., & Kim, D. (2020). Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catalysis Today340, 277-285.
[43]. Meshram, T. (2020). Mineralogical variation in platinum group element within altered chromitite of the Kondapalli layered igneous complex (Southern India): Implication on magmatic evolution and its petrogenetic significance. Ore Geology Reviews120, 103398.
[44]. Chauhan, G., Kaur, P. J., Pant, K. K., & Nigam, K. D. P. (2020). Sustainable metal extraction from waste streams. John Wiley & Sons.